2026 SPRING MEETING
OF THE ASSOCIATION FOR SYMBOLIC LOGIC

The Palmer House, Chicago, IL
Central APA Meeting

February 18-21, 2026
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The 2026 Spring Meeting is part of the meeting of the Central Division of the American
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The Central APA Meeting runs February 18-21, 2026 and includes other talks and
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Program change: Unfortunately, James Walsh (New York University) is unable to
deliver his invited talk Modal definability in Kripke’s theory of truth. Joel Hamkins
will speak in his place, delivering the talk Mathematicians do not agree on the essential
structure of the complexr numbers.

6:00 — 6:50
7:00 — 7:50
8:00 — 8:20
8:30 — 8:50
9:00 — 9:20
7:00 — 7:50
8:00 — 8:50

Wednesday February 18, 6:00 PM-7:50 PM

ASL Invited Talks Session I
Chair: TBA

Francesca Zaffora Blando (Carnegie Mellon University) Schnorr
randomness and rates of convergence to the truth.

Joel David Hamkins (University of Notre Dame) Mathematicians
do not agree on the essential structure of the complexr numbers.

Wednesday February 18 6, 8:00 PM—9:20 PM

ASL Contributed Talks Session
Chair: TBA

Sara Ayhan (Ruhr University) Contradictions without negation and
a proof-theoretic, bilateralist account of connexive logics.

Erin Carmody (SUNY Delhi) Mitchell rank for supercompactness.
John Marvin (University of Chicago) Why did Ed Nelson think
arithmetic is inconsistent, and how did he try to prove it?

Thursday February 19, 7:00 PM-8:50 PM

ASL Invited Talks Session II
Chair: TBA

Oystein Linnebo (Oslo University) What is potentialism?
Jason Zesheng Chen (University of California Irvine) The
emergence of a foundational role.



Friday February 20, 7:00 PM-8:50 PM

ASL Invited Talks Session III
Chair: TBA

7:00 — 7:50 Neil Barton (National University Singapore) Metasemantics and the
continuum hypothesis.

8:00 — 8:50 Mateusz Lelyk (University of Warsaw) Around the categoricity of
Peano Arithmetic.

Abstracts of invited plenary lectures

» NEIL ALEXANDER BARTON, Metasemantics and the Continuum Hypothesis.

Philosophy Department, National University of Singapore.
E-mail: n.barton@nus.edu.sg.

The Continuum Hypothesis featured top of Hilbert’s list of 23 problems in 1900.
Today, we still consider the question, with various programmes pulling in different
directions. This conceptual diversity raises a puzzle: In what sense do we disagree when
we talk about it? A standard assumption takes it that the content of our thought about
classes and the Continuum Hypothesis is uniform across agents and times. Assuming a
moderate view of how content is determined, I reject this assumption. However, I also
argue that whilst the Continuum Hypothesis can have different content for different
agents, it can also be determinate for certain programmes. In particular, I suggest that
there is a fault line between those who think there are uncountable sets and recent
countabilist programmes.

JASON ZESHENG CHEN, The emergence of a foundational role.
Independent Scholar, San Jose, CA, USA.
E-mail: zeshengc@uci.edu.

This talk will sketch the emergence of a particular purpose served by set theory, and
then attempt to characterize it as foundational, perhaps with outlooks similar to those
characterized in Maddy’s insightful analysis of discourse regarding foundations ([T}, 2]).

The narrative will revolve around descriptive set theory and the technical branch of
set theory known today as Borel equivalence relations theory (cf. [3, [4]).I am going
to show that, throughout its development, the theory has come to serve a peculiar
foundational purpose - which I shall call Barrier Exposure. To illustrate, I return
to the early days of descriptive set theory, when the Borel sets were first introduced
in [5]. By studying the introduction of Borel sets in its historical context, I argue
that they were introduced as a way to restrict attention to the tractable problems
in analysis. This point remains salient (although not always explicit) in the later
development of (descriptive) set theory amidst controversies surrounding the axiom of
choice, for instance in [6], where abstract equivalence relations were first considered.
Particular attention will be paid, in this case, to the common context and motivations
of Borel and Luzin, and subsequently to the more modern development in the technical
literature, e.g., [7,[8], ultimately culiminating in the methodological maxim: heed where
intractability begins.

From this perspective, set theory can be seen to play a two-fold role: one of or-
ganizing and relating various structures from diverse fields of mathematics and their
attendant classification problems (akin to model theory and category theory’s Produc-
tive Guidance [9]), and the other of delineating the boundaries of the tractable and
intractable such problems.

I will argue that this is a role that can be considered foundational. More precisely, I



will attempt to come to a conditional conclusion: this role is as foundational as some
of the other candidates considered in the current foundational literature ([9} [10} [11]).
In other words, I will argue that insofar as category theory and model theory can be
said to play a foundational role in mathematics, as evidenced in its providing the kinds
of services outlined by Maddy and Baldwin, the same kind of role is being played by
set theory today.

[1] PENELOPE MADDY, Set-theoretic foundations, Contemporary Mathematics
(Andrés Caicedo, James Cummings, Peter Koellner, and Paul Larson, eds.), vol. 690,
American Mathematical Society, Providence, Rhode Island, 2017, pp. 289-322.

[2] PENELOPE MADDY, What do we want a foundation to do?, Reflections on
the Foundations of Mathematics: Univalent Foundations, Set Theory and
General Thoughts (Stefania Centrone, Deborah Kant, and Deniz Sarikaya, eds.),
Springer International Publishing, Cham, 2019, pp. 293-311.

[3] GREG HJORTH, Borel equivalence relations, Handbook of Set Theory (Matthew
Foreman and Akihiro Kanamori, eds.), Springer Netherlands, Dordrecht, 2010, pp. 297—
332.

[4] Su Gao, Invariant descriptive set theory, Chapman and Hall/CRC, 2008.

[5] EMILE BOREL, Lecons sur la théorie des fonctions, vol. 1, Gauthier-Villars,
1898.

[6] NIkOLAI NIKOLAEVICH LUZIN, Sur les ensembles analytiques, Fundamenta
Mathematicae, vol. 10 (1927), pp. 1-95.

[7] MATTHEW FOREMAN, DANIEL RUDOLPH, AND BENJAMIN WEISS, The conjugacy
problem in ergodic theory, Annals of Mathematics, vol. 173 (2011), no. 3, pp. 1529—
1586.

[8] Luca MotTto Ros, Classification problems from the descriptive set theoretical
perspective, Research Trends in Contemporary Logic, (Melvin Fitting, Dov Gab-
bay, Massoud Pourmahdian, Adrian Rezus, and Ali Sadegh Daghighi, eds.), Forthcom-
ing.

[9] JouN T. BALDWIN, Ezploring the generous arena, The Philosophy of Penelope
Maddy (Sophia Arbeiter and Juliette Kennedy, eds.), vol. 31, Springer International
Publishing, Cham, 2024, pp. 143-164.

[10] Tim BUTTON, SEAN WALSH, AND WILFRID HODGES, Philosophy and model
theory, Oxford University Press, Oxford, 2018.

[11] JouN T. BALDWIN, Model theory and the philosophy of mathematical
practice: formalization without foundationalism, Cambridge University Press,
New York, NY, 2018.

JOEL DAVID HAMKINS, Mathematicians do not agree on the essential structure of
the complex numbers.

Department of Philosophy, University of Notre Dame.

E-mail: jdhamkins@nd.edu.

What is the essential structure of the complex numbers? Mathematicians, it turns
out, do not generally agree—indeed one can find sharply worded disagreements. Do we
have a purely algebraic conception of the complex numbers, taking it as an algebraically
closed field with only its algebraic structure? Or do we have an analytic view, as a
field over the real numbers, distinguished as a particular subfield? Or should we have
a topological view? Perhaps we have a rigid conception of the complex plane, with
the coordinate structure of the real and imaginary parts. Many mathematicians find it
fundamentally wrong to break the symmetry between ¢ and —i, and indeed the various
perspectives give rise to fundamentally different understandings of the automorphism
group, and they are not all fully bi-interpretable nor even mutually interpretable. I



shall place the whole discussion into the context of the philosophy of structuralism
and the question of what is a number. This talk is based on my essay at https:
//www.infinitelymore.xyz/p/complex-numbers-essential-structurel

MATEUSZ LELYK, Around the categoricity of Peano Arithmetic.
Faculty of Philosophy, University of Warsaw.
E-mail: mlelykQuw.edu.pl.

The goal of the talk is to present some recent developments revolving around the
question: how different may various structures satisfying the axioms of arithmetic be?
By the ”axioms of arithmetic” we mean the usual basic axioms for addition and multi-
plication of natural numbers and the scheme of induction - the system typically called
Peano Arithmetic. The talk is divided into three parts. In the first one, we explain a
recent result obtained jointly with David Gonzalez, Dino Rossegger and Patryk Szlufik
which provides a full classification of possible Scott complexities of countable models
of Peano Arithmetic, [3]. Intuituvely, Scott complexity analysis delivers quantitative
information about how hard it is to describe a given structure uniquely up to an iso-
morphism. More p recisely, a countable structure M has Scott complexity I" iff there is
an L, . sentence ¢ of complexity I' such that (1) M [ ¢, (2) any countable model N
which satisfies ¢ is isomorphic to M and (3) ¢ is ”the least complicated” sentence satis-
fying (1) and (2). The results of [3] show that, except for a few exceptions, any infinite
realizable Scott complexity is a Scott complexity of a model of Peano Arithmetic.

In the second part of the talk the above result is contrasted with the situation for
Peano’s axioms in the context of full second-order semantics. As famously shown by
Dedekind, each two models of Peano’s axioms, whose all subsets satisfy the induction
scheme, are isomorphic. Over recent years there were some attempts, most notably in
[5], [4] and [2] to obtain first-order versions of the Dedekind categoricity argument. We
argue that these arguments are best seen as being about concrete schemes, as opposed
to theories and present a convenient framework for stating this kind of first-order
internal categoricity arguments which explicitely tracks how strong means are required
to establish the definiteness claim for a given scheme. Finally, we comment on internally
categorical schemes which axiomatize a proper subtheory of Peano Arithmetic.

The third part of the talk is devoted to the notion of solidity: a categoricity-like
notion for first-order theories introduced in [I] and further studied in [2]. Roughly
speaking, to verify that a theory T is solid, we fix an arbitrary model M |= T and look
at the class of models of T which are interpreted in M. Then we narrow this class to
these models which are rich enough to interpret back an isomorphic copy of M (and
the isomorphism is M-definable). A theory T is solid if, for an arbitrarily chosen M,
this last class contains uniquely models which are (M-verifiably) isomorphic to M. In
the talk we explain why this can be seen as a meaningful categoricity-like notion for
first-order theories, give a proof of solidity of Peano Arithmetic and comment on the
possibility of constructing its proper solid subtheories.

Part two is based on a joint work with Piotr Gruza, while part three is a joint work
with Piotr Gruza and Leszek Kolodziejczyk.

[1] ALl ENAYAT, Variations on a Visserian theme, A tribute to Albert Visser,
(J. van Eijk, R. Iemhoff, J. Joosten, editors), College Publications, London, 2016,
pp- 99-110.

[2] AL1 ENAYAT, AND MATEUSZ LELYK, Categoricity-like properties in the first-order
realm, Journal for the Philosophy of Mathematics, vol. 1 (2024), pp. 63-98.

[3] DAVID GONZALEZ, MATEUSZ LELYK, DINO ROSSEGGER, AND PATRYK SZLUFIK,
Classifying the complexity of models of arithmetic, arXiv:2507.12025.
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[4] PENELOPE MADDY AND JOUKO VAANANEN, Philosophical Uses of Categoric-
ity Arguments, Cambridge University Press, 2023.

[6] JOUKO VAANANEN, Tracing internal categoricity, Theoria. A Swedish Journal
of Philosophy, vol. 87 (2021), no. 4, pp. 986-1000.

@OYSTEIN LINNEBO, What is potentialism?
Department of Philosophy, University of Oslo, 0315 Oslo, Norway.
E-mail: oysteinl@uio.no.

Aristotle famously claimed that the only coherent form of infinity is potential, not
actual. However many objects there are, it is possible for there to be yet more; but it
is impossible for there in fact to be infinitely many objects. Although this view was
superseded by Cantor’s transfinite set theory, even Cantor regarded the collection of
all sets as “unfinished” or incapable of “being together”. In recent years, there has
been a revival of interest in potentialist approaches to the philosophy and foundations
of mathematics, which invoke collections that are merely potential [3], [5], [4]. Here I
attempt to clarify what potentialism is and is not, and to respond to some objections.

The heart of potentialism, I argue, is the phenomenon of incompletability, understood
as the claim that there are collections whose members cannot all be “jointly available”.
Although this incompletability has a very natural modal analysis, the use of modality
is shown to be inessential. To be jointly available is to be a plurality (as in plural
logic [I]). This enables a non-modal analysis of potentialism based on a “critical”
plural logic, which rejects the unrestricted plural comprehension scheme that allows
any formula to define a plurality [2].

Next, these analyses are used to tackle some central objections to potentialism. Some
find the modality used in potentialism problematic. I canvas some ways to understand
the modality but observe that, thanks to the non-modal analysis of incompletability,
the modality can also be understood as playing a merely heuristic role. Others contend
that potentialism is ultimately equivalent to actualism. I respond that the restricted
plural logic at the core of potentialism has sharp, logical-mathematical consequences
concerning classes and perhaps also concerning the logic of quantification.

[1] GEORGE BooLos, To be is to be a value of a variable (or to be some values of
some variables), Journal of Philosophy, vol. 81 (1984), no. 8, pp. 430-449.

[2] SALVATORE FLORIO AND (JYSTEIN LINNEBO, The Many and the One: A
Philosophical Study of Plural Logic, Oxford University Press, 2021.

[3] OYSTEIN LINNEBO, The potential hierarchy of sets, The Review of Symbolic
Logic, vol. 6 (2013), no. 2, pp. 205-228.

[4] CHRIS SCAMBLER, Can all things be counted?, Journal of Philosophical Logic,
vol. 42 (2021), no. 5, pp. 1079-1106.

[5] JAMES STUDD, The iterative conception of set: A (bi-)modal aziomatisation,
Journal of Philosophical Logic, vol. 42 (2013), no. 5, pp. 697-725.

JAMES WALSH, Modal definability in Kripke’s theory of truth.
Department of Philosophy, New York University.
E-mail: jmwb34@nyu.edu.

In Outline of a Theory of Truth, Kripke introduces some of the central concepts of
the logical study of truth and paradox. He informally defines some of these—such as
groundedness and paradoxicality—using modal locutions We introduce a model lan-
guage for regimenting these informal definitions. Though groundedness and paradoxi-
cality are expressible in the modal language, we prove that intrisicality—which Kripke
emphasizes but does not define modally—is not. This follows from a characteriza-
tion of the modally definable relations and an attendant axiomatization of the modal
semantics.



» FRANCESCA ZAFFORA BLANDO, Schnorr randomness and rates of convergence to
the truth.
Department of Philosophy, Carnegie Mellon University, Baker Hall 161, 5000 Forbes
Avenue, Pittsburgh, PA 15213, USA.
E-mail: fzaffora@andrew.cmu.edu.
URL Address: https://francescazafforablando.com.

Lévy’s Upward Theorem—a fundamental martingale convergence theorem that is
also a cornerstone of Bayesian epistemology and philosophy of science—establishes that
the conditional expectation of an integrable random variable converges almost surely to
the random variable’s true value with increasing information. In this talk, I will show
that, by appealing to computability theory and the theory of algorithmic randomness,
one can characterize the probability-one set of points along which convergence to the
truth obtains and identify the conditions under which convergence to the truth occurs
at a computable rate. I will focus on two main results featuring Schnorr randomness,
a canonical algorithmic randomness notion that has turned out to play an important
role in computable analysis and measure theory. We will see that, for a natural class of
effective random variables—the class of lower semi-computable random variables with
a computable p-norm (where p > 1 is itself a computable real number)—the Schnorr
random points coincide with the truth-conducive points. Then, we will see that, for
the same class of effective random variables, (i) the Schnorr random points weakly
compute a rate of convergence for the conditional expectation and (ii) convergence
to the truth is guaranteed to occur at a computable rate along all Schnorr random
points of computably dominated degree. I will discuss these results, as well as their
philosophical ramifications, in the general setting of computable Polish spaces equipped
with computable probability measures: a setting that provides an appropriately broad
class of spaces and measures to develop Bayesian epistemology for computationally
bounded probabilistic reasoners. These results are joint work with Simon Huttegger
(UC Irvine) and Sean Walsh (UCLA).

Abstract of Contributed Talks

» SARA AYHAN, Contradictions without negation and a proof-theoretic, bilateralist ac-
count of connezive logics.
Institute of Philosophy I, Ruhr University Bochum, Germany.
E-mail: sara.ayhan@rub.de.
URL Address: https://sites.google.com/view/sara-ayhan.

The study of connexive logics has undergone a recent increase in attention. A usual
conception of these contra-classical systems is that (among further conditions) they val-
idate theorems called Aristotle’s Theses and Boethius’ Theses, which are non-theorems
of classical logic. A standard example for a formulation of Aristotle’s Thesis is the
following: ~(~A — A), expressing that no formula is implied by its own negation. A
prominent system among these is Wansing’s (2005) logic C, which is also a non-trivial
negation-inconsistent logic (also called contradictory logics) in the sense that it con-
tains formulas of the form A and ~A among its theorems. Thus, both the conception of
connexive and of contradictory logics seem to rely heavily on the presence of a negation.

I will show, though, that this is not necessarily the case. Therefore, I will present and
discuss the negation-free fragment of a bilateralist version of C. With this approach,
firstly, a different notion of contradictory logics that does not rely on negation incon-
sistency but rather on a primitive notion of refutation will be motivated. Secondly,
I will propose a change of the usual definition commonly given for connexive logics.
Though there are different proposals for definitions of (different forms of) connexive



logics, what they all have in common is that they focus on whether or not certain for-
mulas are validated. My definition will radically break with these definitions by purely
relying on a rule-based account of connexivity. Thus, I will propose a conception of
connexive logics based on (bilateralist) proof-theoretic semantics.

[1] HEINRICH WANSING, Connezxive modal logic, Advances in Modal Logic, Vol. 5
(Renate Schmidt and Tan Pratt-Hartmann and Mark Reynolds and Heinrich Wansing,
editors), College Publications, London, 2005, pp. 367-383.

ERIN CARMODY, Mitchell rank for supercompactness.
SUNY Delhi, 454 Delhi Drive, Delhi, NY 13753 USA.
E-mail: carmodek@delhi.edu.

Almost every large cardinal studied so far comes with degrees of its existence, or
seems to have the potential for degrees. For example, Mitchell rank for measurable
cardinals provides degrees for measurable cardinals. In a previous paper, I showed how
to precisely define the degrees of inaccessible cardinals as Mahlo did for Mahlo cardinals.
In another paper, Gitman and Habi¢ define degrees of Ramsey cardinals. This paper
defines a Mitchell rank for supercompact cardinals. Along with the degrees of a large
cardinal comes the forcings which can kill a large cardinal to any desired degree. It is
not yet known if for every degree of a large cardinal there is a forcing to kill it so that
in the forcing extension it has the desired maximum rank or degree, but so far they
seem to go hand in hand. In this paper, I will also show how to force to cut down a
measurable cardinal’s Mitchell rank to any (possible) desired rank, and then we will
see how to softly kill Mitchell rank for supercompactness. In the end, we will include
similar results for other large cardinals including interactions between supercompact
and strongly compact cardinals. Before we see the measurable and supercompact cases,
I will state several theorems which fit into the killing-them-softly theme of forcing to
destroy a large cardinal property while preserving lesser large cardinal properties. For
example, if k is any degree t of inaccessiblility there is a forcing extension where « is
still ¢-inaccessible but not ¢ + 1-inaccessible. In this theorem ¢ is a meta-ordinal since
there are more than Ord (using 2 for the order type of Ord to define the meta-ordinals)
many degrees of inaccessible cardinals. A meta-ordinal is a formal syntactic expression
for the order-types of Ord and beyond. We have a similar theorem for Mahlo cardinals,
and so on.

[1] ARTHUR APTER AND MOTI GITIK, The least measurable can be strongly compact
and indestructible. The Journal of Symbolic Logic, vol. 63 (1998), no. 4, pp. 1404—
1412.

[2] ERIN CARMODY, Killing them soflty: degrees of inaccessible and Mahlo cardinals.
Mathematical Logic Quarterly, vol. 63 (2017), no. 3-4, pp. 256-264.

[3] ERIN CARMODY, VICTORIA GITMAN, AND MIHA E. HABIC, A Mitchell-like order
for Ramsey and Ramsey-like cardinals. Fundamenta Mathematicae, vol. 248 (2020),
pp. 1-32.

[4] WiLLIAM B. EASTON, Powers of regular cardinals. Annals of Mathematical
Logic, vol. 1 (1970), pp. 139-178.

[5] HAIM GAIFMAN, A generalization of Mahlo’s method for obtaining large cardinal
numbers. Israel Journal of Mathematics, vol. 5 (1967), pp. 188-200.

[6] VICTORIA GITMAN, Ramsey-like cardinals. The Journal of Symbolic Logic,
vol. 76 (2011), no. 2, pp. 519-540.

[7] JoEL DAVID HAMKINS, Destruction or preservation: as you like it. Annals of
Pure and Applied Logic, vol. 91 (1998), no. 2-3, pp. 191-229.

8] Ezxtensions with the approximation and cover properties have no new large
cardinals. Fundamenta Mathematicae, vol. 180 (2003), no. 3, pp. 257-277.




[9] A multiverse perpective on the aziom of constructibility. Infinity and
Truth, vol. 25 (2013).

[10] JOEL DAVID HAMKINS AND SAHARON SHELAH, Superdestructibility: a dual to
Laver’s indestructibility. The Journal of Symbolic Logic, vol. 63 (1998), no. 2,
pp. 549-554.

[11] THOMAS JECH, Set Theory, Third Millenium Edition, Springer, 2002.

[12] R. BJORN JENSEN AND KENNETH KUNEN, Some combinatorial properties of L
and V. Unpublished, 1969.

[13] AKIHIRO KANAMORI, The Higher Infinity, Second Edition, Springer, 2003.

[14] MENACHEM MAGIDOR, How large is the first strongly compact cardinal? Or a
study on identity crises. Annals of Mathematical Logic, vol. 10 (1976), pp. 33-57.

[15] PAUL MAHLO, Uber lineare transfinite Mengen, Berichte iiber die Verhand-
lungen der Kéniglich Sdchsischen Gesellschaft der Wissenschaften zu Leipzig,
Mathematisch-Physische Klasse, vol. 63 (1911), pp. 187-225.

[16] WILLIAM MITCHELL, Hypermeasurable cardinals. Logic Colloguium 78
(Mons), (Maurice Boffa, Dirk van Dalen, and Kenneth McAloon, editors), North Hol-
land, 1979, pp. 303-316.

[17] JASON A. SCHANKER, Weakly measurable cardinals. Mathematical Logic
Quarterly, vol. 57 (2011), no. 3, pp. 266—280.

JOHN MARVIN, Why did Ed Nelson think arithmetic is inconsistent, and how did he
try to prove it?

Department of Philosophy and The Divinity School, University of Chicago, 5835 S
Greenwood Ave, Chicago, IL 60637.

E-mail: johnmarvin@uchicago.edu.

In 2012, luminary Princeton mathematician Ed Nelson infamously announced to the
Foundations of Mathematics email list that he had a strategy for proving that Primitive
Recursive Arithmetic (PRA) is inconsistent, and that thus all stronger foundational sys-
tems (e.g. PA, ZFC) including it are too. This talk will exhaustively examine Nelson’s
writings and endeavor to explain how and why he came to believe that arithmetic is
inconsistent, explaining his radically skeptical “strict formalism” and the intellectual-
historical conditions to which it responds, looking at his unusual understanding of
Thomist and Aristotelian philosophical convictions, and detailing the religious obses-
sions and even experiences that prompted his quixotic project. It will also sketch the
technical ideas behind his unsuccessful proof and its development of Chaitin’s work
and the Kritchman-Raz “Surprise Examination Paradox” version of the second incom-
pleteness theorem (as well as his little-discussed original ideas toward the same goal),
detailing in turn where Nelson’s ultimate strategy is irreparably flawed. Finally, this
talk will discuss Nelson’s constructive vision for mathematics and the surprisingly pre-
scient essential role he saw for computer proof systems, as early as the 1990s, in a
post-inconsistency mathematical discipline.

Abstracts Presented By Title

JOACHIM MUELLER-THEYS, Stabner’s stone.
Independent Scholar, Heidelberg, Germany.
E-mail: mueller-theys@gmx.de.

We analyzed a certain paradox in a sober manner through the observation that from
somehow evident: If x is all-mighty, then x can even create a stone that is so heavy
that x can not carry it, and tacit: If x is all-mighty, x can carry all, it can be proven
by contradiction that nothing is all-mighty.



We then obtained the same theorem within a considerably simpler and less special
mathematical theory from single: If = is all-mighty, © can even create something with
the empty property.

I. Undefined predicates are AllM (“all-mighty”) and CC' (“can create”).
DEFINITION. (i) 2 CCx y :+> 2 CCy A Xy (z can create y with property X);

(ii) CCSx z :+» Jy £ CCx y (z can create something with X);

(iii) CCSAP z :+» VX CCSx x (x can create something for and with any property).
BucHHOLZ'S AXIOM. AlIM C CCSAP, videlicet Vz (AlIM z — CCSAPz).

Note: We had previously defined and interposed all-creativity: AllC x <> Vy x CCy;
AllM € AllC, AlIC E CCSAP.

II. We define S y <> Stoney A y IsSoHeavyThat —x CanCarry y, CanCarryAll x

> Vy x CanCarryy, and use AlIM C CanCarryAll as further axiom.

THEOREM. — 3z AllM x .

Proof (by contradiction). Suppose AlIM zo for some zo. By axiom I, CCSAP zg.
Hence VX CCSx zo, whence, particularly, CCSSEO To. So o CCSzo yo for some yo
viz. o CCyo N Szoyo. By Sz Yo, Yo IsSoHeavyThat —xo CanCarryyo, whence
—xo CanCarryyo . However, by AlIM xo and AlIM T CanCarryAll, CanCarryAll xo ,
whence xo CanCarryyo. Thus o CanCarry yo <A xo CanCarry yo .

III. We return to level 1. By using the empty property () instead of S, , we already

obtain that nothing is all-mighty:

THEOREM. — 3z AlIM x .

Proof. As in proof II, we get VX CCSx xo, from which now CCSpxo. So o CCyyo,
viz. o CC yo A Byo , whence 0y . However, since Vo =0z, = Qyo .

IV. We add the predicate God and obtain that there is no all-mighty God:
COROLLARY. =3z (AlIM x A God x) .

Proof. Suppose AlIM xo A God zo , whence AllM xo. However, from theorem III (or
IT), Vo = AllM z , whence = AlIM xo . Contradiction!

V. The factual use of “all” (as in science) is literal (cf. “all primes are odd”). None-
theless, at least colloquially, ‘all’ is often used in the sense of almost all, most, or even
many. This might be reflected in the spelling “almighty” (cf. grofmdchtig).

By admitting non-empty properties only, we may have found a logical loophole:
DEFINITION. CCSARP x :+» VX (Real X — CCSx z) (z can create something for
and with any real property), where Real X :+» 3z Xx .

Thanks: Wilfried Buchholz, Klaus-Peter Stabner, Shannon Miller; LARA webinar &
LUW, Jean-Yves Béziau; Lem, Dostoevsky; Ulrike Hahn, Andreas Haltenhoff, Thomas
De Motter; and ‘Peana Pesen’.



