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2025 NORTH AMERICAN ANNUAL MEETING

OF THE ASSOCIATION FOR SYMBOLIC LOGIC

New Mexico State University

Las Cruces, NM, USA

May 13-16, 2025

Please note: This program is a draft for the upcoming ASL North American meeting
and is subject the change. Updated versions will be posted on the ASL website and
the conference website.

Program Committee: Uri Andrews, Valeria de Paiva, Ilya Shapirovsky, Caroline Terry,
and Simon Thomas (chair).
Local Organizing Committee: John Harding (chair), Andre Kornell, Joel Lucero-Bryan,
Patric Morandi, Bruce Olderding, Ilya Shapirovsky, and Son Tran.
Please see https://math.nmsu.edu/asl-2025/index.html for additional information.

The conference will take place in Science Hall, home of the Mathematics Department
at New Mexico State University. The plenary lectures and tutorials will take place in
Science Hall 102. The special sessions and contributed talks will be held in Science Hall
106, 107, 108, 109 and 115. The welcoming reception will be held at 6pm on Tuesday
May 13 at the Courtyard by Marriott.

TUESDAY, May 13

Morning

8:30 – 9:00 Registration.
9:00 – 10:00 Opening Remarks, followed by Invited Lecture: Maryanthe

Malliaris (University of Chicago), New perspectives on
model-theoretic complexity

10:00 – 10:20 Coffee.
10:30 – 11:20 Tutorial Lecture 1: Mariya I. Soskova (University of Wisconsin),

Enumeration reducibility and effective mathematics, part 1.
11:30 – 12:20 Invited Lecture: Patrick Lutz (UC Berkeley), Measure

hyperfiniteness and lossless expansion.

Afternoon

2:00 – 3:50 Special Session CT1, ML1, MT1 and ST1. See pages 3–6.
4:00 – 4:20 Coffee.
4:30 – 5:20 Invited Lecture: Sergei Artemov (Graduate Center CUNY),

Consistency of PA is a serial property, and it is provable in PA.
6:00 – 9:00 Welcoming Reception at the Courtyard by Marriott.
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WEDNESDAY, May 14

Morning

8:30 – 9:00 Registration.
9:00 – 9:50 Tutorial Lecture 1: Julia Wolf (University of Cambridge), An

introduction to higher-order stability, part 1.
10:00 – 10:20 Registration and coffee.
10:30 – 11:20 Tutorial Lecture 2: Mariya I. Soskova (University of Wisconsin),

Enumeration reducibility and effective mathematics, part 2.
11:30 – 12:20 Invited Lecture: Benjamin Castle (University of Illinois),

Reconstruction problems in geometry via model theory.

Afternoon

2:00 – 3:50 Special Session CL1, CT2, ML2, MT2 and ST2. See pages 3–6.
4:00 – 4:20 Coffee.
4:30 – 5:50 Contributed Talks. See pages 6–6.

THURSDAY, May 15

Morning

8:30 – 9:00 Registration.
9:00 – 9:50 Tutorial Lecture 2: Julia Wolf (University of Cambridge), An

introduction to higher-order stability, part 2.
10:00 – 10:20 Coffee.
10:30 – 11:20 Tutorial Lecture 3: Mariya I. Soskova (University of Wisconsin),

Enumeration reducibility and effective mathematics, part 3.
11:30 – 12:20 Invited Lecture: Alejandro Poveda (Harvard University), Recent

developments on the theory of supercompact cardinals.

Afternoon

12:40 – 4:10 Special Session PA1. See pages 3–6.
2:00 – 3:50 Special Session CL2, CT3 and MT3. See pages 3–6.
4:00 – 4:20 Coffee.
4:30 – 5:20 Invited Lecture: Felix Weilacher (UC Berkeley), Separating

complexity classes of LCL problems on grids.

FRIDAY, May 16

Morning

8:30 – 9:00 Registration.
9:00 – 9:50 Tutorial Lecture 3: Julia Wolf (University of Cambridge), An

introduction to higher-order stability, part 3.
10:00 – 10:20 Coffee.
10:30 – 12:20 Special Session CL3, ML3, PA2 and ST3. See pages 3–6.
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SPECIAL SESSIONS

CL. Combinatorics and Logic

(Organized by Artem Chernikov, Damir Dzhafarov, and Andrew Marks)

Session CL1: Wednesday, May 14, Science Hall 109.

2:00 – 2:30 Saugata Basu (Purdue University), Cohomological VC-density:
bounds and applications.

2:40 – 3:10 Chris Conidis (College of Staten Island), The computability of the
uniform Krull intersection theorem.

3:20 – 3:50 Cecelia Higgins (UC Los Angeles), Complexity of finite Borel
asymptotic dimension.

Session CL2: Thursday, May 15, Science Hall 109.

2:00 – 2:30 David Gonzalez (UC Berkeley), Ramsey theoretic statements
motivated by generic computability.

2:40 – 3:10 Sam Murray (McGill University), Borel fractional perfect matchings
in quasi-transitive amenable graphs.

3:20 – 3:50 Rehana Patel (Wesleyan University), Countable infinitary theories
admitting an invariant measure.

Session CL3: Friday, May 16, Science Hall 109.

10:30 – 11:00 Theodore A. Slaman (UC Berkeley), Cauchy subsequences and the
cohesiveness principle.

11:10 – 11:40 Atticus Stonestrom (University of Notre Dame), An arithmetic
algebraic regularity lemma.

11:50 – 12:20 Andy Zucker (University of Waterloo), Enumerations of Boolean
algebras.

CT. Computability Theory

(Organized by Meng-Che (Turbo) Ho and Manlio Valenti)

Session CT1: Tuesday, May 13, Science Hall 106.

2:00 – 2:50 Julia Knight (University of Notre Dame), Computable Π2 Scott
sentences.

3:00 – 3:20 Keshav Srinivasan (George Washington University), Effective
ultrapowers of algebraic extensions of Q.

3:30 – 3:50 Andrew DeLapo (University of Connecticut), Computability and
countable second-countable spaces.

Session CT2: Wednesday, May 14, Science Hall 106.

2:00 – 2:50 Reed Solomon (University of Connecticut), Strong indivisibility for
graphs.

3:00 – 3:20 Steffen Lempp (University of Wisconsin), Chains and antichains in
the Weihrauch lattice.

3:30 – 3:50 Ang Li (University of Wisconsin), Countable ordered groups and
Weihrauch reducibility.

Session CT3: Thursday, May 15, Science Hall 106.

2:00 – 2:50 Alexander Melnikov (Victoria University, Wellington), The space of
continuous functions: a playground for logic.
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3:00 – 3:20 Java Darleen Villano (University of Connecticut), Computable
categoricity relative to a generic degree.

3:30 – 3:50 Jacob Fiedler (University of Wisconsin), Extending affine subspaces
in higher dimensions.

ML. Modal Logic

(Organized by Wesley Holliday and Ilya Shapirovsky)

Session ML1: Tuesday, May 13, Science Hall 115.

2:00 – 2:20 Joel Lucero-Bryan (New Mexico State University), On modal logics
arising from the Čech-Stone compactification of ordinals.

2:30 – 2:50 Vladislav Sliusarev (New Mexico State University), Criteria of local
tabularity of products of modal logics.

3:00 – 3:20 Tadeusz Litak (FAU Erlangen-Nürnberg), TBA.
3:30 – 3:50 Fedor Pakhomov (University of Ghent), The logic of correct models.

Session ML2: Wednesday, May 14, Science Hall 115.

2:00 – 2:20 Andrew Bacon (University of Southern California), What is the
logic of logical necessity?

2:30 – 2:50 Ahmee Christensen (UC Berkeley), First-order Fischer Servi logic.
3:00 – 3:20 Joseph McDonald (University of Alberta) Monadic ortholattices:

completions and duality
3:30 – 3:50 Eric Pacuit (University of Maryland), Common p-belief and

plausibility measures.

Session ML3: Friday, May 16, Science Hall 115.

10:30 – 10:50 Konstantinos Papafilippou (University of Ghent), Parametric
unification: when projectivity meets uniform post-interpolants.

11:00 – 11:20 Alexandru Baltag (Institute for Logic, Language and
Computation), The topology of surprise.

11:30 – 11:50 Sonja Smets (Institute for Logic, Language and Computation),
Reasoning about quantum information: the probabilistic logic of
quantum programs.

MT. Model Theory

(Organized by Gabe Conant and Nick Ramsey)

Session MT1: Tuesday, May 13, Science Hall 108.

2:00 – 2:20 Aaron Anderson (University of Pennsylvania), Examples of distal
metric structures.

2:30 – 2:50 Diego Bejarano (UC Berkeley), Definability and Scott rank in
separable metric structures.

3:00 – 3:20 David Meretzky (University of Notre Dame), Differential Galois
theory with new algebraic constants.

Session MT2: Wednesday, May 14, Science Hall 108.

2:00 – 2:50 Michael C. Laskowski (University of Maryland), Equivalents of
NOTOP.

3:00 – 3:20 Christine Eagles (University of Waterloo), A uniqueness condition
for composition analyses.

3:30 – 3:50 Michele Bailetti (Wesleyan University), A walk on the wild side.
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Session MT3: Thursday, May 15, Science Hall 108.

2:00 – 2:50 Lynn Scow (California State University, San Bernardino), The
modeling property.

3:00 – 3:20 Léo Jimenez (The Ohio State University), Internality of autonomous
systems of differential equations.

3:30 – 3:50 Aris Papadopoulos (University of Maryland), Mekler’s construction
and Murphy’s law for 2-nilpotent groups.

PA. Proof Assistants

(Organized by Patricia Johann and Jonathan Weinberger)

Session PA1: Thursday, May 15, Science Hall 107.

12:40 – 1:20 Egbert Rijke (Johns Hopkins University), Mathematical structures
from a univalent point of view.

1:30 – 1:45 Patricia Johann (Appalachian State University), Deep induction for
advanced data types.

1:55 – 2:10 Talitha Holcombe (Chapman University), A common abstract
syntax for total functional programming and interactive theorem
provers.

2:20 – 3:00 Michael Shulman (University of San Diego), An observational proof
assistant for higher-dimensional mathematics.

3:10 – 3:25 Wojciech Nawrocki (Carnegie Mellon University), Compiling
homotopy type theory with Lean: syntax and interpretation.

3:30 – 3:45 Spencer Woolfson (Carnegie Mellon University), Compiling
homotopy type theory with Lean: the groupoid model of HoTT0.

3:55 – 4:10 Aeacus Sheng (Carnegie Mellon University), Formally verifying
automata for trusted decision procedures.

Session PA2: Friday, May 16, Science Hall 107.

10:30 – 11:10 Leonardo de Moura (Amazon Web Services), Verified collaboration:
low Lean is transforming mathematics, programming, and AI.

11:20 – 12:00 Emily Riehl (Johns Hopkins University), Prospects for formalizing
the theory of weak infinite-dimensional categories.

12:05 – 12:20 Peter Jipsen (Chapman University), Representability and
formalization of relation algebras.

ST. Set Theory

(Organized by Dima Sinapova and Clinton Conley)

Session ST1: Tuesday, May 13, Science Hall 107.

2:00 – 2:30 Natasha Dobrinen (University of Notre Dame), Ramsey spaces and
their ultrafilters.

2:40 – 3:10 Anton Bernshteyn (University of California, Los Angeles), Borel
Local Lemma for graphs of slow growth.

3:20 – 3:50 Filippo Calderoni (Rutgers University), Idealistic equivalence
relations remastered.

Session ST2: Wednesday, May 14, Science Hall 107.

2:00 – 2:30 James Cummings (Carnegie Mellon University), Linear orderings
and singular cardinal combinatorics.

2:40 – 3:10 Ruiyuan Chen (University of Michigan), Topology versus Borel
structure for actions, equivalence relations, and groupoids.
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3:20 – 3:50 Maxwell Levine (University of Freiburg) Namba forcing and singular
cardinals.

Session ST3: Friday, May 16, Science Hall 106.

10:30 – 10:50 Riley Thornton (Carnegie Mellon University), Measurable nibbling
and hypergraph limits.

11:00 – 11:20 William Adkisson (University of California Los Angeles), Tree
properties at successors of singulars of many different cofinalities.

11:30 – 11:50 Jenna Zomback (University of Maryland), Asymptotically spherical
groups.

12:00 – 12:20 Eyal Kaplan (University of California, Berkeley), Failure of GCH on
a measurable with the Ultrapower Axiom.

CONTRIBUTED TALKS

WEDNESDAY, May 14

Session A, 4:30-5:50, Science Hall 106.

4:30 – 4:50 Jackson West (New Mexico State University), Farness logics of
Euclidean spaces.

5:00 – 5:20 Elijah Gadsby (Graduate Center CUNY), Properties of selector
proofs.

5:30 – 5:50 Arzhang Kamarei (Kamarei Advisory), Using paradoxical
conditionals to reify and imply a semantic fixed point for Godel’s G in
first order arithmetic.

Session B, 4:30-5:50, Science Hall 107.

4:30 – 4:50 Sapir Ben-Shahar (University of Wisconsin), On quasi-reducibility
for c.e. sets.

5:00 – 5:20 Bjørn Kjos-Hanssen (University of Hawai‘i at Mānoa), The
Shannon effect.

5:30 – 5:50 Ronald Fuller (Institute for Logic and the Public Interest), A new
kind of information.

Session C, 4:30-5:20, Science Hall 108.

4:30 – 4:50 Morgan Bryant (University of Maryland), Merges of smooth classes
and their properties.

5:00 – 5:20 Connor Lockhart (University of Maryland), Model theory of the
Farey graph via smooth classes.

Session D, 4:30-5:50, Science Hall 109.

4:30 – 4:50 Tan Ozalp (Notre Dame University), Initial Tukey structure below a
stable ordered-union ultrafilter.

5:00 – 5:20 Hongyu Zhu (University of Wisconsin), The Borel complexity of the
class of models of first-order theories.

5:30 – 5:50 Robert S. Lubarsky (Florida Atlantic University), On strategies for
player II in Σ0

2 games.
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Abstract of invited tutorial

I MARIYA I. SOSKOVA, Enumeration reducibility and effective mathematics.
University of Wisconsin–Madison, 480 Lincoln Dr, Madison WI 53706, USA .
E-mail: soskova@wisc.edu.

Relative computability allows us to compare incomputable sets with respect to their
algorithmic complexity. The most widely studied way to do this was introduced by
Turing [3]: a set of natural numbers X is Turing reducible to a set of natural numbers
Y if there is an algorithm to determine whether n ∈ X when given Y as data.

Turing reducibility between sets of natural numbers allows us to gauge the algorith-
mic content of a mathematical object, such as a real number or a continuous function.
For example, Moschovakis [2] observed that every continuous function is computable
relative to some fixed Turing oracle, thus understanding relatively computable func-
tions gives a different perspective on the study of continuous functions on the reals.
This point of view belongs to effective mathematics. However, Turing reducibility is
not well suited to handle partial information: suppose that instead of total access to
the membership in the oracle, we are only given access to the positive information.
Friedberg and Rogers [1] capture this extended model of relative computability: X is
enumeration reducible to Y if there is an algorithm to enumerate X given any enumer-
ation of Y .

Each reducibility induces a partial order, its degree structure, in which we identify
sets that are reducible to each other. There is a way to express Turing reducibility
using enumeration reducibility and so we can view the Turing degrees DT as a proper
substructure of the enumeration degrees De. Understanding the algebraic profile of the
larger structure results in a better understanding of the smaller one. We need both
Turing and enumeration reducibility to study effective mathematics. In this tutorial we
will explore various aspects of enumeration reducibility, the induced degree structure,
as well as its relationship to the Turing degrees and to effective mathematics.

[1] Richard M. Friedberg and Hartley Rogers, Jr., Reducibility and complete-
ness for sets of integer, Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik, vol. 5 (1959), pp. 117–125.

[2] Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the
Foundations of Mathematics, North-Holland, 1980.

[3] A. M. Turing, Systems of Logic Based on Ordinals, Proceedings of the Lon-
don Mathematical Society, vol. 45 (1939), no. 3, pp. 161–228.

I JULIA WOLF, An introduction to higher-order stability.
Department of Pure Mathematics and Mathematical Statistics, University of Cam-
bridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB,
United Kingdom.
E-mail: julia.wolf@dpmms.cam.ac.uk.

For more than half a century, the model-theoretic notion of stability has played a
fundamental role in describing tame behaviour, with numerous manifestations across
algebra, number theory and combinatorics. In the latter setting, Malliaris and Shelah
showed in 2014 that graphs whose edge relation is stable satisfy a particularly strong
version of Szemerédi’s regularity lemma, a key tool in extremal combinatorics and
theoretical computer science since the late 1970s. In this tutorial, I will explain how
higher-order generalisations of Szemerédi’s regularity lemma, which emerged in the
early 2000s in groundbreaking work of Gowers and independently Rödl–Nagle–Skokan–
Schacht, have recently pointed the way towards a long-sought generalisation of stability,
beyond the case of binary formulas.
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We begin by recalling the definitions of stability and NIP, before surveying a cascade
of results inspired by Malliaris–Shelah, both in the setting of graphs and finite groups.
In particular, we aim to draw out the distinct roles that stability and NIP play in
the context of regularity decompositions, as well as the connection between regularity
decompositions of finite groups and the model-theoretic “connected component”.

We then motivate the ternary notions NIP2, introduced by Shelah in 2017, and
NFOP2, introduced in joint work with Terry in 2021, and show how their implications in
the setting of regularity lemmas for 3-uniform hypergraphs provide compelling evidence
for the claim that these two notions do indeed constitute higher-arity analogues of NIP
and stability, respectively.

If time permits, we will give an overview of the most recent literature on NFOPk, in-
cluding work of Abd-Aldaim–Conant–Terry and Boissonneau-Papadopoulos-Touchard.

Abstracts of invited plenary lectures

I SERGEI ARTEMOV, Consistency of PA is a serial property, and it is provable in PA.
Graduate Center CUNY, 365 Fifth Ave., New York City, NY 10016, USA.
E-mail: sartemov@gc.cuny.edu.

We revisit the question of whether the consistency of Peano Arithmetic PA can be
established in PA. First, we show that Gödel’s Second Incompleteness theorem, G2,
does not imply a negative answer to this question. Then, we reconfigure Hilbert’s
epsilon-substitution method of proving consistency and use partial truth definitions to
establish PA consistency in PA.

The consistency of a theory means that all its formal derivations are free of contradic-
tions. Derivations are finite syntactic objects, and their Gödel codes are all standard
natural numbers. Such numbers can be identified with numerals 0, 1, 2, . . . , n . . . in
the language of PA (we’ll drop overlines for better readability). Let x : y denote the
standard primitive recursive proof predicate in PA “x is code of a proof of a formula
having code y” and ⊥ stand for the formula (0 = 1). Consider the series of formulas,
consistency scheme, ConSPA:

¬(0 :⊥),¬(1 :⊥),¬(2 :⊥), . . . ,¬(n :⊥), . . . .

Since Gödel numbering and proof predicate represent the structure of proofs adequately,
ConSPA holds iff PA is consistent.

Although the scheme ConSPA fairly represents PA consistency in the form compatible
with the language of PA, ConSPA is not within the scope of the usual provability in PA
defined for individual formulas. To address the provability of consistency question, we
have either

1. to reformulate consistency as a single PA-formula or
2. to extend the notion of PA-proofs to serial properties in a way formalizable in PA.

For (1), logicians have traditionally considered the consistency formula ConPA:

∀x ¬(x :⊥),

in which the informal quantifier “for all numerals” hidden in ConSPA is replaced by the
formal PA-quantifier “∀x.” The problem with the consistency formula is that in PA,
ConPA is strictly stronger than ConSPA, hence than PA consistency. Here are some
justifications for this claim.

• Conceptual: “for all numerals” quantifies over standard numbers 0, 1, 2, . . . , n . . .
and PA consistency is known to hold for each of them. The range of “∀x” includes
also nonstandard numbers and, by G2, “¬(x :⊥)” can fail on some nonstandard
x.
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• Proof theoretic: ConPA yields all of ConSPA, but PA + ConSPA does not yield ConPA.
• Model theoretic: in the context of PA provability, we have to consider all models

of PA, not just the standard model. ConSPA holds in all models whereas ConPA, by
G2, fails in some nonstandard models of PA.

Therefore, the unprovability of ConPA in PA does not answer the question about the
provability of PA consistency in PA.

For (2), extending the notion of finite proof to serial properties in PA is imperative.
The one formula provability is not directly applicable in metamathematics, where many
basic principles are serial properties. We cannot even directly prove in PA its own
induction principle or that the product of any two polynomials is a polynomial. For
these and similar serial properties F , mathematicians de facto accept corresponding
contentual selector proofs: PA proves that each instance of F is provable. When selector
proofs are defined rigorously, the consistency scheme ConSPA becomes provable in PA.

Other reference points for selector proofs are Hilbert’s epsilon substitution method
and Brouwer-Heyting-Kolmogorov proofs of universal statements, cf. the detailed dis-
cussion in [2].

Definition. Let F be a series of arithmetical formulas {F0, F1, . . . , Fn, . . . }. A
selector proof of F in PA is a pair of (i) a selector which is an operation that given n
provides a proof of Fn in PA, and a verifier which is a proof in PA that the selector does
(i). For this work, selectors are assumed to be explicit primitive recursive operations.
A formalized selector proof of F is a pair 〈s, v〉 with:

(i) an arithmetical term s(x) formalizing the given selector procedure,
(ii) a natural formalization of a given verifier which is a PA-proof v of

∀x[s(x) :F •(x)].

Here F •(x) is a natural primitive recursive term which for each n returns the Gödel
number of Fn. This definition of a selector proof in PA naturally extends to selector
proofs in other sufficiently strong theories.

Selector proofs are decidable finite objects which subsume the usual proofs. Fur-
thermore, if a serial property {F0, F1, . . . , Fn, . . . } is provable in PA, then each of Fn is
provable in PA. Selector proofs are sound w.r.t. the standard model. This means that
selector proofs meet the principal requirement:

whatever is provable is arithmetically true

and, as such, could be endorsed as a correct (and overlooked) extension of the notion
of proof from single formulas to serial properties.

Theorem (Provability of Consistency). The consistency of PA in the form of ConSPA
is selector provable in PA.

This work refutes the Unprovability of Consistency thesis, UoC, and it removes a
principal roadblock of Hilbert’s consistency program.

The selector proof of PA consistency was given in [1, 2]. Selector proofs in a general
setting have been discussed in [2, 3, 6]. Some technical results useful for the theory
of selector proofs were found in [5]. Selector proofs also have been explored by Elijah
Gadsby, whose presentation was submitted for this conference. In [4] and in further
publications, Detlefsen rejected the G2-based justification of UoC from philosophical
finitistic positions. Our work refutes UoC on mathematical grounds and proves PA
consistency in PA.

[1] S. Artemov, The Provability of Consistency, ArXiv preprint,
arXiv:1902.07404, 2019.

[2] S. Artemov, Serial properties, selector proofs and the provability of consistency,
Journal of Logic and Computation, exae034, 2024.
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[3] Y. Cheng, Current research on Gödel’s incompleteness theorems, The Bulletin
of Symbolic Logic, vol. 27 (2021), no. 2, pp. 113–167.

[4] M. Detlefsen, On interpreting Gödel’s second theorem., Journal of Philo-
sophical Logic, vol. 8 (1979), pp. 297–313.

[5] A. Ignjatović, Hilbert’s Program and the omega-rule, The Journal of Sym-
bolic Logic, vol. 59 (1994), no. 1, pp. 322–343.

[6] P. G. Santos, W. Sieg, and R. Kahle, A new perspective on completeness
and finitist consistency, Journal of Logic and Computation, vol. 34 (2024), no. 6,
pp. 1179–1198, exad021.

I BENJAMIN CASTLE, Reconstruction Problems in Geometry via Model Theory.
Department of Mathematics, University of Illinois Urbana Champaign.
E-mail: btcastl2@illinois.edu.

In algebraic geometry, reconstruction problems ask for the recovery of an algebraic
variety from a restricted set of data. The idea is to determine when a smaller amount
of algebraic structure is enough to recover all algebraic structure. Geometers typically
formulate such problems categorically – however, a natural equivalent formulation is
often possible using definability in a certain first-order language. In this talk, I will
explain the basic set up of relics and full relics of a first-order structure, and show how –
by observations of Zilber – reconstruction problems really amount to determining which
relics of a field are full. I will then discuss how powerful tools in stability theory have
recently led to a series of classification theorems for relics of fields. Time permitting,
I will then give a survey of a new reconstruction theorem in algebraic geometry which
was proven using the model-theoretic setup above.

I PATRICK LUTZ, Measure hyperfiniteness and lossless expansion.
Department of Mathematics, University of California, Berkeley.
E-mail: pglutz@berkeley.edu.

The structure of the class of countable Borel equivalence relations under Borel re-
ducibility has been a major focus of descriptive set theory over the past few decades.
However, many open questions remain, a number of which involve the class of hyper-
finite equivalence relations (essentially the simplest nontrivial countable Borel equiv-
alence relations). In order to better understand these questions, Conley and Miller
introduced a weakening of Borel reducibility, known as measure reducibility. They
then answered the analogues for measure reducibility of several open questions involv-
ing hyperfinite equivalence relations. However, they left open at least one such question.
Namely, is there a minimal non-hyperfinite equivalence relation under the relation of
measure reducibility? Such an object is called a ”measure successor of E0.” In ongoing
work, Jan Greb́ık and I have isolated a combinatorial property of group actions on
Polish spaces which implies that the associated orbit equivalence relation is a measure
successor of E0. We have also identified several examples of group actions which are
plausible candidates for satisfying this condition. The combinatorial property we have
identified is a strong form of graph expansion which we call ”lossless expansion” after
a similar property studied in computer science and combinatorics. I will explain the
context for Conley and Miller’s question and the combinatorial condition that Greb́ık
and I have isolated and then sketch the main ideas which relate this combinatorial
condition to hyperfiniteness.

I MARYANTHE MALLIARIS, New perspectives on model-theoretic complexity.
Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago
IL 60637, USA.
E-mail: mem@math.uchicago.edu.
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Part of the power of model-theoretic dividing lines comes from having many different
equivalent definitions. The talk will discuss several recent theorems in which certain
model theoretic dividing lines appear inherently in other fields, and consider what this
means on both sides.

I ALEJANDRO POVEDA, Recent developments on the theory of supercompact cardinals.
Department of Mathematics and Center of Mathematical Sciences and Applications,
Harvard University, 20 Garden St, Cambridge MA, US.
E-mail: alejandro@cmsa.fas.harvard.edu.

In this presentation we will report on some recent progress on the theory of super-
compact cardinals. We will begin presenting various consistency results as well as a
conjecture about how the large-cardinal hierarchy of Woodin’s Ultimate-L looks like
at these latitudes. One of our main theorems is the consistency of every supercom-
pact cardinal being supercompact with inaccessible targets, which answers questions
by Bagaria and Magidor. This configuration follows from a new axiom we introduce
(Axiom A) which is shown to be consistent with all known large cardinals. We will
show that axiom A yields a Scott-like theorem for Ultimate-L.

On a related note, we shall also report on the effect of Woodin’s HOD Hypothesis
upon the behavior of supercompact(-like) cardinals in HOD. As a result of our analy-
sis we will answer questions by Cummings–Friedman–Golshani and Cheng–Hamkins–
Friedman.

I FELIX WEILACHER, Separating complexity classes of LCL problems on grids.
Department of Mathematics, University of California, Berkeley, 970 Evans Hall, MC
3840 Berkeley, CA 94720-3840, USA.
E-mail: weilacher@berkeley.edu.

A locally checkable labeling (LCL) problem on a finitely generated group Γ asks one
to find a labeling of Cayley graph of Γ satisfying a fixed, finite set of “local” constraints.
Such a labeling can equivalently be described as an element of some Γ-subshift of finite
type.

How hard is it to solve a particular LCL problem? We consider this question from the
point of view of several fields that might be lumped together under the term definable
combinatorics. The common theme is that we are given a free action of Γ, and want to
solve the LCL problem in a “uniform” way on the orbits. For example, in descriptive
set theory we might have a continuous action of Γ on a Polish space and wish to solve
the problem in a continuous, Borel, etc. way. In computability theory we might have
an action of Γ on N and wish to solve the problem in a computable way.

We study the case Γ = Zn, where we separate various “complexity classes” in defin-
able combinatorics which were not previously known to be distinct. For example, we
construct LCL problems on Zn which . . .

• Have measurable solutions but not necessarily Borel solutions for actions on stan-
dard probability spaces.

• Have computable solutions but not necessarily Baire measurable solutions.
• Can be solved as a factor of i.i.d. variables on Zn, but not as a so-called “finitary”

factor.

The first and third items resolve questions of Greb́ık and Rozhoň. The second and
third items are the first examples of such separation for any group.

This is joint work with Katalin Berlow, Anton Bernshteyn, and Clark Lyons.
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Abstracts of invited talks in the Special Session on

Combinatorics and Logic Theory

I SAUGATA BASU AND DEEPAM PATEL, Cohomological VC-density: bounds and
applications.
Department of Mathematics, Purdue University, 150 N. University st., West Lafayette,
IN 47907, USA.
E-mail: sbasu@math.purdue.edu.
E-mail: patel471@purdue.edu.

The concept of Vapnik-Chervonenkis (VC) density is pivotal across various mathe-
matical fields, including model theory, discrete geometry, and probability theory. In
this paper, we introduce a topological generalization of VC-density. Let Y be a topo-
logical space and X ,Z(0), . . . ,Z(q−1) be families of subspaces of Y . We define a two
parameter family of numbers, vcdp,qX ,Z , which we refer to as the degree p, order q,

VC-density of the pair

(X ,Z = (Z(0), . . . ,Z(q−1)).

The classical notion of VC-density within this topological framework can be recovered
by setting p = 0, q = 1. For p = 0, q > 0, we recover Shelah’s notion of higher-order
VC-density for q-dependent families [4]. Our definition introduces a new notion when
p > 0.

We examine the properties of vcdp,qX ,Z when the families X and Z(i) are definable

in structures with some underlying topology (for instance, the analytic topology over
C, the etale site for schemes over arbitrary algebraically closed fields, or the Euclidean
topology for o-minimal structures over R). Our main result establishes that in any
model of these theories

vcdp,qX ,Z ≤ (p+ q) dimX.

This result generalizes known VC-density bounds in these structures [3, 2, 1], extending
them in multiple ways, as well as providing a uniform proof paradigm applicable to
all of them. We give examples to show that our bounds are optimal. Moreover, our
bounds on 0/1-patterns actually goes beyond model-theoretic contexts: they apply to
arbitrary correspondences of schemes with respect to singular, étale, or `-adic coho-
mology theories. A particular consequence of our results is the extension of the bound
on 0/1-patterns for definable families in affine spaces over arbitrary fields, as initially
proven in [3], to general schemes.

We present combinatorial applications of our higher-degree VC-density bounds, de-
riving topological analogs of well-known results such as the existence of ε-nets and the
fractional Helly theorem. We show that with certain restrictions, these results extend
to our higher-degree topological setting.

[1] Matthias Aschenbrenner, Alf Dolich, Deirdre Haskell, Dugald
Macpherson and Sergei Starchenko, Vapnik-Chervonenkis density in some the-
ories without the independence property, I, Transactions of the American Mathe-
matical Society, vol. 368 (2016), no. 8, pp. 5889–5949.

[2] Saugata Basu, Combinatorial complexity in o-minimal geometry, Proceedings
of the London Mathematical Society. Third Series, vol. 100 (2010), no. 2, pp. 405–
428.

[3] L. Rónyai, L. Babai and M. Ganapathy, On the number of zero-patterns of
a sequence of polynomials, Journal of the American Mathemtical Society, vol. 14
(2001), no. 3, pp. 717–735.
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[4] Saharon Shelah, Strongly dependent theories, Israel Journal of Mathemat-
ics, vol. 204 (2014), no. 1, pp. 1–83.

I CHRIS CONIDIS, The computability of the uniform Krull intersection theorem.
College of Staten Island, 2800 Victory Boulevard Staten Island NY 10314, USA.
E-mail: chris.conidis@csi.cuny.edu.

The Krull Intersection Theorem (KIT) [1, Theorem 8.9] says that if I is an ideal in a
Noetherian integral domain R, then 0 is the only element contained in every power of
I. We examine the computability properties of KIT, especially in the uniform context.
More precisely, we can show that while the classical proof of uniform Krull implies
comprehension for two quantifier predicates, there is also logically simpler argument.

[1] H. Matsumura, Commutative Ring Theory, Cambridge University Press,
2006.

I DAVID GONZALEZ, Ramsey theoretic statements motivated by generic computability.
Department of Mathematics, University of California, Berkeley, Evans Hall, University
Dr, Berkeley, CA 94720.
E-mail: david gonzalez@berkeley.edu.

Calvert, Cenzer, and Harizanov introduced several notions of dense computability
for countable structures. These tools are used to understand the computable structure
theory for weaker, approximate forms of computability. That said, a turn in recent
work has revealed that understanding some of these notions is far more structural than
initially expected. Efforts in the area have moved in part to studying the substructure
relation and its stronger, more elementary counterparts. In particular, looking for well-
behaved substructures and elementary substructures of a class of structures in a manner
analogous to Ramsey’s theorem is key to understanding the generic computability of
those structures.

This talk will focus on the structural Ramsey-like theorems that have emerged from
this line of research. We will also discuss how and to what extent these results are
related to questions regarding generic computability. New results regarding notions of
generic categoricity will be emphasized.

This talk is based on joint work with Wesley Calvert, Doug Cenzer, and Valentina
Harizanov.

I CECELIA HIGGINS, Complexity of finite Borel asymptotic dimension.
Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza,
Los Angeles, CA 90095, USA.
E-mail: ceceliahiggins@math.ucla.edu.

A Borel graph is hyperfinite if it can be written as a countable increasing union
of Borel graphs with finite components. It is a major open problem in descriptive
set theory to determine the complexity of the set of hyperfinite Borel graphs. In a
recent paper, Conley, Jackson, Marks, Seward, and Tucker-Drob introduce the notion
of Borel asymptotic dimension, a definable version of Gromov’s classical notion of
asymptotic dimension, which strengthens hyperfiniteness and implies several nice Borel
combinatorial properties. We show that the set of locally finite Borel graphs having
finite Borel asymptotic dimension is Σ1

2-complete. This is joint work with Jan Greb́ık.

I SAM MURRAY, Borel fractional perfect matchings in quasi-transitive amenable graphs.
Department of Mathematics and Statistics, McGill University, 845 Sherbrooke St W,
Montreal.
E-mail: samuel.murray@mail.mcgill.ca.

In this talk, we show that if a locally finite Borel graph with quasi-transitive amenable
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components admits a fractional perfect matching, it will admit a Borel fractional per-
fect matching. In particular, if a countable amenable quasi-transitive graph admits a
fractional perfect matching then its Bernoulli graph admits a Borel fractional perfect
matching.

I REHANA PATEL, Countable infinitary theories admitting an invariant measure.
Department of Mathematics and Computer Science, Wesleyan University, 265 Church
Street, Middletown, CT 06459, U.S.A.
E-mail: rpatel@wesleyan.edu.

The notion of “probabilistic structure” has a long history going back at least to
Gaifman in 1964. In a modern framing, these probabilistic structures are closely related
to probability measures on the class of structures in a fixed countable language with
underlying set N that are invariant under the logic action. The ergodic such invariant
measures, which we call ergodic structures, are of particular interest because they admit
a satisfaction relation with respect to sentences of the infinitary logic Lω1ω. In this
talk, we will describe some aspects of a model theory for this satisfaction relation. This
is joint work with Nathanael Ackerman and Cameron Freer.

I THEODORE A. SLAMAN, Cauchy subsequences and the cohesiveness principle.
Department of Mathematics, University of California Berkeley, Berkeley, CA.
E-mail: slaman@berkeley.edu.

One of the tenets of Reverse Math is that every basic theorem in a typical undergrad-
uate mathematics curriculum is equivalent to one of the “Big Five”: Recursive Com-
prehension, Weak König’s Lemma, Arithmetic Comprehension, Arithmetic Transfinite
Recursion, or Π1

1-comprehension. The restriction to typical undergraduate mathemat-
ics is necessary since there is a well-documented zoo of combinatorial counter-examples,
especially within Ramsey Theory. Counter to the Big-Five-Tenet, one of these combi-
natorial examples, the Cohesiveness Principle, is formally equivalent to the statement
“Every totally bounded sequence of rational numbers has a Cauchy subsequence.” This
same statement can be used to highlight the role of non-effective methods within a first
undergraduate course on Mathematical Logic.

I ATTICUS STONESTROM, An arithmetic algebraic regularity lemma.
University of Notre Dame.
E-mail: atticusstonestrom@yahoo.com.

In [6], Tao proved an ‘algebraic regularity lemma’ for families of graphs uniformly
definable in finite fields, which improves the conclusions of Szemerédi’s regularity lemma
in that setting. I will present an ‘arithmetic’ version of this theorem, ie a version for
uniformly definable subsets of uniformly definable groups; this follows in the vein of
papers such as [1], [2], [3], [7], and [8] in giving good structure theorems for subsets of
groups satisfying additional combinatorial hypotheses.

The precise statement of the theorem is the following: for any M > 0, any finite field
F, and any definable group (G, ·) in F and definable subset D ⊆ G, each of complexity
at most M , there is a normal definable subgroup H 6 G, of index and complexity
OM (1), such that the following holds: for any cosets V,W of H, the bipartite graph

(V,W, xy−1 ∈ D) is OM (|F|−1/2)-quasirandom.
When G is the additive group of the field, this result relates in a similar way to

Green’s theorem from [5] as Tao’s result relates to Szemerédi regularity. On the opposite
end of the spectrum, when G is the F-points of a simply-connected semisimple algebraic
group over F, the result is connected to and largely subsumed by Gowers’ work in [4].

This is joint work with Anand Pillay.
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[1] Noga Alon, Jacob Fox, and Yufei Zhao, Efficient arithmetic regularity and
removal lemmas for induced bipartite patterns, Discrete Analysis, vol. 3 (2019).

[2] Gabriel Conant, Anand Pillay, and Caroline Terry, A group version
of stable regularity, Mathematical Proceedings of the Cambridge Philosophical
Society, vol. 168, (2020), no. 2, pp. 405-413.

[3] Structure and regularity for subsets of groups with finite VC-dimension,
Journal of the European Mathematical Society, vol. 24 (2022), no. 2, pp. 583–621.

[4] Tim Gowers, Quasirandom groups, Combinatorics, Probability, and Com-
puting, vol. 17 (2008), no. 3, pp. 363-387.

[5] Ben Green, A Szemeredi-type regularity lemma in abelian groups, with applica-
tions, Geometric and Functional Analysis, vol. 15 (2005), pp. 340-376.

[6] Terence Tao, Expanding polynomials over finite fields of large characteristic
and a regularity lemma for definable sets, Contributions to Discrete Mathematics,
vol. 10 (2015), no. 1, pp. 22-98.

[7] Caroline Terry and Julia Wolf, Stable arithmetic regularity in the finite
field model, Bulletin of the London Mathematical Society, vol. 51 (2019), no. 1,
pp. 70-88.

[8] Quantitative structure of stable sets in finite abelian groups, Transac-
tions of the American Mathematical Society, vol. 373 (2020), pp. 3885-3903.

I ANDY ZUCKER, Enumerations of Boolean algebras.
Department of Pure Mathematics, University of Waterloo, Waterloo, Canada.
E-mail: a3zucker@uwaterloo.ca.

When attempting to prove big Ramsey results for new structures, exploring recurrent
expansions can be a fruitful place to start. We consider the countable atomless Boolean
algebra and expansions of it by an enumeration order. While we are far from settling
the question of whether or not this structure has finite big Ramsey degrees, we can see
by studying its enumerations that it behaves very differently from any Fraisse limit of
a relational class with strong amalgamation. For Fraisse limits of strong amalgamation
classes, all enumerations are recurrent and in the same recurrence class. For countable
atomless Boolean algebras, some enumerations are not recurrent, and among those that
are, we describe several different recurrence classes. Joint work with Barbara Csima,
Jan Hubicka, and Joey Lakerdas-Gayle.

Abstracts of invited talks in the Special Session on
Computability Theory

I ANDREW DELAPO, Computability and countable second-countable spaces.
Department of Mathematics, University of Connecticut, 341 Mansfield Rd, Storrs, CT
06269, USA.
E-mail: andrew.delapo@uconn.edu.

The study of countable second-countable (CSC) topological spaces within com-
putability theory was initiated by Dorais in 2011 in the context of reverse mathematics.
By restricting to CSC spaces, we can analyze the computability-theoretic content of
several theorems and constructions in point-set topology. For example, we can consider
the fact that every infinite Hausdorff topological space has an infinite discrete subspace.
In this talk, we will examine this principle for CSC spaces from multiple perspectives,
including computable structure theory, reverse mathematics, and the Weihrauch de-
grees.

I JACOB FIEDLER, Extending affine subspaces in higher dimensions.
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Department of Mathematics, University of Wisconsin-Madison.
E-mail: jbfiedler2@wisc.edu.

In geometric measure theory, one often seeks to understand how geometric properties
or operations influence the size of sets. Suppose E ⊂ Rn is the union of a collection
of large subsets of k-dimensional planes. If each subset is replaced with the entire
k-plane, how does this affect the size of the union? We discuss some recent work on
this (classical) problem that uses algorithmic information theory and the point-to-set
principle.

I JULIA KNIGHT, KAREN LANGE, AND CHARLES MCCOY CSC, Computable Π2

Scott sentences.
Department of Mathematics, University of Notre Dame, 255 Hurley, Notre Dame, IN
46556.
E-mail: knight.1@nd.edu.
Department of Mathematics, Wellesley College, Science Center, 106 Central Street,
Wellesley, MA 02481.
E-mail: klange2@wellesley.edu.
Department of Mathematics, University of Portland, 5000 N. Willamette Blvd., Port-
land, OR 97203.
E-mail: mccoy@up.edu.

By a result of Scott [4], each countable structure for a countable language L is
described up to isomorphism by an Lω1ω-sentence, known as a Scott sentence. We
consider structures that are countably infinite. By a result of A. Miller [2], no such
structure has a Σ2 Scott sentence, so having a Π2 Scott sentence is as simple as possible.
A result of Montalbán [3] yields a nice characterization of the structures (for a fixed
countable language) with a Π2 Scott sentence. Computable infinitary formulas involve
c.e. disjunctions and conjunctions, so they are in a sense comprehensible. We set out
to characterize the structures (for a fixed computable language) with a computable Π2

Scott sentence. We found some examples and proved some partial results. However,
it turns out that there is no nice characterization of the class. The index set is Π1

1-
complete. Rachael Alvir, Barbara Csima, and Harrison-Trainor [1] have also shown
this. The two groups worked independently, and the proofs are different.

[1] R. Alvir, B. Csima, and M. Harriston-Trainor, On the computability of
optimal Scott sentences, manuscript, December 21, 2024.

[2] A. Miller, The Borel classification of the isomorphism class of a countable
model, Notre Dame Journal of Formal Logic, vol. 24 (1983), no. 1, pp. 22-34.

[3] A. Montalbán, A robuster Scott rank, Proceedings of the American Math-
ematical Society, vol. 143 (2015), no. 12, pp. 5427-5436.

[4] D. Scott, Logic with denumerably long formulas and finite strings of quantifiers,
The Theory of Models (John Addison, Leon Henkin, and Alfred Tarski, editors)
North-Holland, Amsterdam, 1965, pp. 329-341.

I STEFFEN LEMPP, Chains and antichains in the Weihrauch lattice.
Department of Mathematics, University of Wisconsin-Madison, Madison, WI.
E-mail: lempp@math.wisc.edu.

We study the existence and the distribution of “long” chains in the Weihrauch de-
grees, mostly focusing on chains of uncountable cofinality. We characterize when such
chains have an upper bound and prove that there are no cofinal chains (of any order
type) in the Weihrauch degrees. Furthermore, we show that the existence of coinitial
sequences of non-zero degrees is equivalent to CH. Finally, we explore the extendibility
of antichains, providing some necessary conditions for maximality.

This is joint work with Marcone and Valenti.
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I ANG LI, Countable Ordered Groups and Weihrauch Reducibility.
Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Drive,
USA.
E-mail: ali233@wisc.edu.

This paper continues to study the connection between reverse mathematics and
Weihrauch reducibility. In particular, we study the problems formed from Maltsev’s
theorem [1] on the order types of countable ordered groups. Solomon [2] showed that
the theorem is equivalent to Π1

1-CA0, the strongest of the big five subsystems of second
order arithmetic. We show that the strength of the theorem comes from having a
dense linear order without endpoints in its order type. Then, we show that for the

related Weihrauch problem to be strong enough to be equivalent to ŴF (the analog
problem of Π1

1-CA0), an order-preserving function is necessary in the output. Without
the order-preserving function, the problems are very much to the side compared to
analog problems of the big five.

[1] Anatoly Mal’tsev, On ordered groups, Izvestiya Akademii Nauk SSSR.
Seriya Matematicheskaya, vol. 13 (1949), no. 6, pp. 473–482.

[2] Reed Solomon, Π1
1-CA0 and Order Types of Countable Ordered Groups, The

Journal of Symbolic Logic, vol. 66 (2001), no. 1, pp. 192–206.

I ALEXANDER MELNIKOV, The space of continuous functions: a playground for logic.
School of Mathematics and Statistics, Victoria University of Wellington, Wellington,
New Zealand.
E-mail: alexander.g.melnikov@gmail.com.

In my talk, I will present a sequence of results concerning computability-theoretic and
descriptive properties of the space C([0, 1];R) of continuous functions on [0, 1], as well
as of spaces C(K;R), where K is compact Polish. I will discuss results that are local
(i.e., describe interesting classes of functions) as well as global (i.e., describe the space
itself). The results are joint with many co-authors and span over 5+ years of work.
They include the characterisation of C([0, 1];R) among all separable Banach spaces,
the primitive recursive universality of C([0, 1];R), an unexpected characterisation of
regular (automatic) real functions, and several very recent results related to the effective
content of Banach-Stone Duality between C(K;R) and K.

I REED SOLOMON, Strong indivisibility for graphs.
Department of Mathematics, University of Connecticut, Storrs, CT 06269-1009.
E-mail: david.solomon@uconn.edu.

A graph is strongly indivisible if whenever it is partitioned into two pieces, one
of the pieces is isomorphic to the original graph. Peter Cameron showed there are
exactly three strongly indivisible graphs: the countable complete graph, the countable
completely disconnected graph, and the random graph. In this talk, I will discuss
joint work with Damir Dzhafarov and Andrea Volpi on various effective versions of this
classification theorem and connections to reverse mathematics.

I KESHAV SRINIVASAN, Effective ultrapowers of algebraic extensions of Q.
Department of Mathematics, George Washington University, Washington DC.
E-mail: ksrinivasan@gwmail.gwu.edu.

We consider a computability-theoretic ultrapower construction for structures. We
start with a computable structure, and consider its countable ultrapower over a cohesive
set of natural numbers. A cohesive set is an infinite set of natural numbers that is
indecomposable with respect to computably enumerable sets. It plays the role of an
ultrafilter, and the elements of a cohesive power are the equivalence classes of certain
partial computable functions. Thus, unlike many classical ultrapowers, a cohesive
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power is a countable structure. We focus on the cohesive powers of fields, specifically
algebraic extensions of Q. We analyze the algebraic properties of these cohesive powers,
and determine just how far their first-order theory is from the original field, utilizing
the latest results of number theorists working on generalizations of Hilbert’s Tenth
Problem to Q and related fields.

I JAVA DARLEEN VILLANO, Computable categoricity relative to a generic degree.
Department of Mathematics, University of Connecticut, 341 Mansfield Rd, Storrs, CT
06269, USA.
E-mail: javavill@uconn.edu.

A computable structure A is said to be computably categorical relative to a degree d
if and only if for all d-computable copies B of A, there is a d-computable isomorphism
f : A → B. This relativization of categoricity behaves chaotically in the c.e. degrees,
and so a natural inquiry which arises is to investigate how it behaves in non-c.e. degrees.
In this talk, we discuss how we can build a computable graph which is not computably
categorical but is computably categorical relative to a 1-generic degree d, and how this
result is optimal.

Abstracts of invited talks in the Special Session on

Modal Logic

I ANDREW BACON, What is the logic of logical necessity?
Department of Philosophy, University of Southern California, Los Angeles, CA.
E-mail: ajbacon2@gmail.com.

Consider an interpreted modal propositional language in which 2 expresses logical
necessity, and let ∆ be the set of logical truths in this language; i.e. the logic of logical
necessity. What can we say about ∆? Since every element of ∆ is a logical truth, every
element of ∆ should be true. Morever, since 2A expresses logical necessity, a sentence
of the form 2A should be true simpliciter if and only if A ∈ ∆.

This naturally leads one to the study of models M such that M |= ∆ and M |= 2A
if and only if A ∈ ∆, and of logics for which such models exist. I distinguish several
special types of logics with this property, and will present some recent joint work with
Kit Fine on their existence and their properties.

I ALEXANDRU BALTAG, The topology of surprise.
Institute for Logic, Language and Computation, University of Amsterdam, NL.
E-mail: thealexandrubaltag@gmail.com.

I present a topological modal logic, motivated by a famous epistemic puzzle: the
Surprise Exam Paradox. It is an epistemic logic, with modalities for ‘knowledge’ (mod-
eled as the universal modality), ‘knowability’ (represented by the topological interior
operator), and ‘surprise’ (i.e. unknowability of the actual world). The last notion has
both a non-self-referential reading (modeled by Cantor’s derivative: the set of limit
points of a given set) and a self-referential one (modeled by Cantor’s perfect core of a
given set: its largest subset without isolated points). I present a complete axiomatiza-
tion of this logic, showing that it is decidable and PSPACE-complete, and I apply it
to the analysis of the Surprise Exam Paradox (in both its non-self-referential and its
self-referential versions).

The results are based on joint work with N. Bezhanishvili and D. Fernandez Duque
[1], and the same method was applied in [2] to prove completeness and decidability
of full topological mu-calculus (based on Cantor’s derivative, interior and universal
modality).
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[1] Baltag, A., N. Bezhanishvili, and D. Fernandez-Duque, The topology
of surprise, 19th International Conference of Knowledge Representation and
Reasoning (Haifa, Israel), (Gabriele Kern-Isberner, Gerhard Lakemeyer, and Thomas
Meyer, editors), International Joint Conference on Artificial Intelligence Organization,
2022, pp. 33–42.

[2] The topological mu-calculus: completeness and decidability, Journal of
the Association for Computing Machinery, vol. 70 (2023), no. 5, pp. 1–38.

I AHMEE CHRISTENSEN, First-order Fischer Servi logic.
Department of Mathematics, University of California Berkeley.
E-mail: achris@berkeley.edu.

The Fischer Servi logic FS is a particularly natural intuitionistic analogue of the
minimal classical normal modal logic K. We prove the completeness of a first-order
analogue of FS with respect to its expected birelational semantics by introducing a
novel model construction, the trace model, and proving a truth lemma. Finally, we
consider a number of extensions of the logic for which completeness results can also
be obtained with trace model constructions. Among these extensions are first-order
intuitionistic analogues of popular normal modal logics like KD and S4.

I JOEL LUCERO-BRYAN, On modal logics arising from the Čech-Stone compactification
of ordinals.
Department of Mathematical Sciences, New Mexico State University, 1780 E University
Ave, Las Cruces, NM, USA.
E-mail: jglb@nmsu.edu.

Topological semantics of modal logic interprets modal diamond as topological clo-
sure, and hence modal box as topological interior. Its roots can be traced back to
the late 1930s and early 1940s in the work of Stone, Tarski, and others. As a con-
sequence of Kuratowski’s closure axioms holding in each topological space, Lewis’s
well-known modal system S4 is the basic modal logic under these semantics. The cel-
ebrated McKinsey-Tarski theorem states that S4 is the modal logic of any separable
dense-in-itself metrizable space [3]. Utilizing the Axiom of Choice, Rasiowa and Siko-
rski showed that the McKinsey-Tarski theorem remains true without the separability
assumption [4]. But further dropping the dense-in-itself assumption introduces modal
logics other than S4. A complete description of such logics was given in [1].

Much less is known beyond metrizable spaces. In [2] it was shown that S4.1.2 is the
modal logic of the Čech-Stone compactification β(ω) of the ordinal ω equipped with
the interval topology. In 2020, Valentin Shehtman posed two related problems:

P1: For each nonzero n ∈ ω, axiomatize the modal logic Ln of the Čech-Stone com-
pactification β(ωn) of the ordinal ωn equipped with the interval topology.

P2: Describe the modal logics arising from the Čech-Stone compactification of an
arbitrary ordinal under the interval topology.

This talk provides partial solutions to both P1 and P2. Specifically, we use the
Continuum Hypothesis to provide a finite axiomatization of the modal logic L2 of
β(ω2). This solves P1 for the case n = 2 under the Continuum Hypothesis. We also
utilize the Cantor normal form of an ordinal to demonstrate the key role of the the
logics Ln in solving P2.

This is joint work with Guram Bezhanishvili, Nick Bezhanishvili, and Jan van Mill.

[1] G. Bezhanishvili, D. Gabelaia, J. Lucero-Bryan, Modal logics of metric
spaces, Review of Symbolic Logic, vol. 8 (2015), no. 1, pp. 178–191.

[2] G. Bezhanishvili and J. Harding, The modal logic of β(N), Archive for
Mathematical Logic, vol. 48 (2009), no. 3-4, pp. 231–242.
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[3] J. C. C. McKinsey and A. Tarski, The algebra of topology, Annals of Math-
ematics, vol. 45 (1944), no. 2, pp. 141–191.

[4] H. Rasiowa and R. Sikorski, The mathematics of metamathematics,
Monografie Matematyczne, Tom 41, Państwowe Wydawnictwo Naukowe, 1963.

I JOSEPH MCDONALD, Monadic ortholattices: completions and duality.
Department of Philosophy, University of Alberta.
E-mail: jsmcdon1@ualberta.ca.

An ortholattice is a bounded lattice equipped with an order-inverting involutive com-
plementation. A monadic ortholattice is an ortholattice equipped with a closure oper-
ator, known as a quantifier, whose closed elements form a sub-ortholattice. Monadic
ortholattices generalize monadic Boolean algebras – the algebraic model of the classi-
cal predicate calculus in a single variable. Janowitz [5] first considered quantifiers on
orthomodular lattices, and Harding [3] studied them, as well as cylindric ortholattices,
for their connections to von Neumann algebras, in particular, to subfactors.

We show that the variety of monadic ortholattices is closed under MacNeille and
canonical completions. In each case, the completion of A is obtained by forming an
associated dual space XA that is a monadic orthoframe. This is a set equipped with an
orthogonality relation and an additional binary relation satisfying certain conditions.
For the MacNeille completion, XA is formed from the non-zero elements of A, and for
the canonical completion, XA is formed from the proper filters of A. The corresponding
completion of A is then obtained as the complete ortholattice of bi-orthogonally closed
subsets of XA with an additional operation defined through the binary relation on XA.

With the introduction of a suitable topology on a monadic orthoframe, we obtain a
dual equivalence between the category of monadic ortholattices and homomorphisms
and the category of monadic orthospaces and certain continuous frame morphisms.

This talk is based on joint work with John Harding and Miguel Peinado [4].

[1] Katalin Bimbó, Functorial duality for ortholattices and De Morgan lattices,
Logica Universalis, vol. 1 (2007), no. 2, pp. 311–333.

[2] Robert Goldblatt, The Stone space of an ortholattice, Bulletin of the Lon-
don Mathematical Society, vol. 7 (1975), no. 1, pp. 45–48.

[3] John Harding, Quantum monadic algebras, Journal of Physics A: Mathe-
matical and Theoretical, vol. 55 (2023). no. 39

[4] John Harding, Joseph McDonald, Miguel Peinado, Monadic ortholattices:
completions and duality, Forthcoming in Algebra Universalis (2025).

[5] Melvin Janowitz, Quantifiers and orthomodular lattices, Pacific Journal of
Mathematics, vol. 13 (1963), no. 4, pp. 1241–1249.

[6] Donald MacLaren, Atomic orthocomplemented lattices, Pacific Journal of
Mathematics, vol. 14 (1964), no. 2, pp. 597–612.

I ERIC PACUIT AND LEO YANG, Common p-belief and plausibility measures.
Department of Philosophy, University of Maryland, USA.
E-mail: epacuit@umd.edu.
URL Address: pacuit.org.
Department of Philosophy, University of Maryland, USA.
E-mail: leoyang@umd.edu.

Aumann’s famous Agreeing to Disagree Theorem [1] states that if a group of agents
share a common prior, update their beliefs by Bayesian conditioning based on private
information, and have common knowledge of their posterior beliefs regarding some
event, these posteriors must be identical. There is an elegant generalization of this
theorem by Monderer and Samet [4], later refined by Neeman [5]: if a group of agents
share a common prior, update their beliefs using Bayesian conditioning on private
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information, and have common p-belief of their posteriors, these posteriors must be
close (i.e., they cannot differ by more than 1 − p). Here, common p-belief generalizes
the concept of common knowledge to probabilistic beliefs: agents commonly p-believe
an event E if everyone believes E to at least degree p, everyone believes to at least
degree p that everyone believes E to at least degree p, and so on.

This paper further extends the Monderer-Samet-Neeman Agreement Theorem from
classical probability measures to plausibility measures—a very general framework in-
troduced by Halpern [2, 3] that unifies many formal models of belief. To facilitate this
extension, we provide a new proof of the Monderer-Samet-Neeman theorem. Building
upon both the original proof and our new proof, we offer two different generalizations
of the theorem to plausibility-based structures.

Our generalized version of the Monderer-Samet-Neeman theorem, based on con-
ditional plausibility measures, provides a unified framework that identifies the key
properties of belief essential for demonstrating that common belief in the posterior
probabilities of an event implies that these probabilities must be close. This result
deepens our theoretical understanding of agreement theorems. We apply these gener-
alized results to various non-classical belief models, including conditional probability
structures and lexicographic probability structures. Furthermore, we demonstrate that
whenever the conditions of our generalized theorems are not met, the Monderer-Samet-
Neeman Agreement Theorem does not hold. Consequently, our findings suggest that
we have identified the minimal conditions required for a belief model to satisfy the
Monderer-Samet-Neeman Agreement Theorem.

[1] Robert J. Aumann, Agreeing to Disagree, Annals of Statistics, vol. 4 (1976),
no. 6, pp. 1236-1239.

[2] Nir Friedman and Joseph Y. Halpern, Plausibility Measures: A User’s
Guide, Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence (First Last and First2 Last2, editors), Morgan Kaufmann Publishers Inc.,
1995, pp. 175 - 184.

[3] Joseph Y. Halpern, Plausibility Measures: A General Approach for Repre-
senting Uncertainty, International Joint Conference on Artificial Intelligence
Morgan Kaufmann Publishers Inc., 2001, pp. 1474 - 1483.

[4] Dov Monderer and Dov Samet, Approximating Common Knowledge with
Common Beliefs, Games and Economic Behavior, vol. 1 (1989), no. 2, pp. 170-190.

[5] Zvika Neeman, Approximating Agreeing to Disagree Results with Common p-
Beliefs, Games and Economic Behavior, vol. 12 (1996), no. 1, pp. 162-164.

I FEDOR PAKHOMOV AND JUAN P. AGUILERA, The logic of correct models.
University of Ghent, Belgium & Steklov Mathematical Institute, Russia.
E-mail: fedor.pakhomov@ugent.be.
Vienna University of Technology, Austria & University of Ghent, Belgium.
E-mail: aguilera@logic.at.

The present talk is based on the paper [1]. The provability interpretation of modal
logic has been classically considered. R. Solovay [2] proved that if we interpret 2ϕ as
“ϕ is provable in PA”, then Gödel-Löb logic GL precisely axiomatizes all universally
provable facts in PA about such an interpretation. Although less widely known, this
paper by Solovay also studied an analogous question for the set-theoretic interpretation
of 2ϕ as “ϕ is true in all models Vκ, where κ is a strongly inaccessible cardinal”.

In the present talk, I will discuss a set-theoretic interpretation of a polymodal lan-
guage with modalities 2n indexed by natural numbers, where each 2nϕ is interpreted
as “ϕ holds in all Σn+1-correct transitive sets”. For ZFC as the base theory, such
an interpretation is correct for the polymodal provability logic GLP introduced by G.
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Japaridze [3] to characterize the logic of graded families of provability predicates in
formal arithmetic (although the question of completeness remains open). We focus our
attention on the case of the constructible universe, i.e., the theory ZFC+L = V as the
base theory. In this case, we show that the logic of this set-theoretic interpretation is
the logic GLP.3, which is the logic GLP extended by the axiom of linearity 3 for each
2n.

The key result about the logic GLP.3 that allows us to prove this completeness is
that GLP.3 is the maximal normal extension of GLP that does not prove 2n⊥ for any
n. It should also be noted that GLP.3 coincides with the logic of closed substitutions
of GLP. Since the axiom of constructivity trivially implies the axioms of linearity,
the maximality of GLP.3 ensures that it is precisely the logic of the correct model
interpretation over ZFC + L = V . Thus, the technical complexities of the result lie
mainly within the domain of modal logic, for which we develop a technique based on
the use of the sublogic J.3 of GLP.3, which is Kripke-complete, unlike the Kripke-
incomplete GLP.3.

[1] J. P. Aguilera and F. Pakhomov, The logic of correct models, Journal of
Mathematical Logic, vol. 25 (2025), no. 1, pp. 1–24. (accepted for publication).

[2] R. M. Solovay, Provability interpretations of modal logic, Israel Journal of
Mathematics, vol. 28 (1976), no. 1, pp. 33–71.

[3] G. Japaridze, The polymodal logic of provability, Intensional Logics and Log-
ical Structure of Theories, Metsniereba, Tbilisi, 1988, pp. 16–48 (Russian).

I KONSTANTINOS PAPAFILIPPOU, Parametric Unification: When Projectivity meets
Uniform Post-Interpolants.
WE16, Gent University, Krijgslaand 281, Belgium.
E-mail: Konstantinos.Papafilippou@ugent.be.

A notion of relativised admissibility has proven itself useful in the characterisa-
tion of the provability logic of Heyting Arithmetic [1]. A generalisation of this notion
arises from studying a parametric form of Unification. In this context, we found a
surprising interplay between projectivity (in the sense introduced by S. Ghilardi [4])
and the uniform post-interpolant for the classical and intuitionistic propositional logic.
In particular, we explore whether a projective substitution of a formula is equivalent
to its uniform post-interpolant, assuming the substitution leaves the variables of the
interpolant unchanged. We show that in classical logic, this holds for all formulas.
Although such a nice property is missing in intuitionistic logic, we provide a Kripke
semantic characterisation for propositions with this property.

A study on a distinct type of parametric unification was performed recently by
R. Nicolau Almeida and S. Ghilardi [3] found similar results. All of this suggests a
deeper connection between Uniform Interpolation and Unification style notions war-
ranting further study.

[1] Mojtaba Mojtahedi, On Provability Logic of HA, arXiv:2206.00445, 2022
[2] Mojtaba Mojtahedi and Konstantinos Papafilippou, Projectivity meets

Uniform Post-Interpolant: Classical and Intuitionistic Logic, Advances in Modal
Logic vol. 15, (Agata Ciabattoni, David Gabelaia and Igor Sedlár, editors), College
Publications, 2024, pp. 549–564.

[3] Rodrigo Nicolau Almeida and Silvio Ghilardi, Unification With Sim-
ple Variable Restrictions and Admissibility of Π2-Rules, Advances in Modal Logic
vol. 15, (Agata Ciabattoni, David Gabelaia and Igor Sedlár, editors), College Publica-
tions, 2024, pp. 79–100.

[4] Silvio Ghilardi, Unification in Intuitionistic Logic, The Journal of Symbolic
Logic, vol. 64 (1999), no. 2, pp. 859–880.
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I VLADISLAV SLIUSAREV, Criteria of local tabularity of products of modal logics.
Department of Mathematics, New Mexico State University, 1780 E University Ave, Las
Cruces, NM 88003, USA.
E-mail: vnvdvc@gmail.com.

A logic is locally tabular, if each of its finite-variable fragments contains only a finite
number of pairwise nonequivalent formulas. It is well known that for unimodal transi-
tive logics, local tabularity is equivalent to finite height [8], [7]. In the non-transitive
unimodal, and in the polymodal case, no axiomatic criterion of local tabularity is
known.

We study locally tabular products of modal logics. For frames F = (X,R) and
G = (Y, S), the product frame F ×G is the frame (X × Y, Rh, Rv), where

Rh = {((a, b), (a′, b)) | b ∈ Y, aRa′}; Rv = {((a, b), (a, b′)) | a ∈ X, bSb′}.

The product L1 × L2 of logics L1, L2 is the bimodal logic of the class of products

{F ×G | F |= L1, G |= L2}.

Local tabularity is established for some families of products. The products with the
logic of equivalence relations S5 provide a valuable example: N. Bezhanishvili [5] showed
that every extension of S5 × S5 is locally tabular, while S5 × S5 itself lacks the local
tabularity [6]. V. Shehtman [9] identified a family of locally tabular modal products.
For close systems, intuitionistic modal logics, G. Bezhanishvili et al. described several
locally tabular families in [1], [3], [2], and a recent manuscript [4].

In the product L1 × L2 of two Kripke complete consistent logics, local tabularity of
L1 and L2 is necessary for local tabularity of L1 × L2. However, the product of two
locally tabular logics can be not locally tabular. The simplest example is the logic
S5×S5 [6] . We provide extra semantic and axiomatic conditions which give criteria of
local tabularity of the product of two locally tabular logics: bounded cluster property
of one of the factors; a condition we call product reducible path property; finiteness of
the one-variable fragment of the product.

We discuss several applications of the criteria. We describe new families of locally
tabular product logics. We show that the local tabularity is not sufficient for the
product finite model property. We give an axiomatic criterion of local tabularity for
all extensions of the logic S4.1BD2 × S5 and introduce a new prelocally tabular logic
above S4× S5.

This talk is based on a joint work with Ilya Shapirovsky, which can be accessed as a
preprint at http://arxiv.org/abs/2404.01670.

[1] Guram Bezhanishvili, Varieties of monadic Heyting algebras - part I, Studia
Logica, vol. 61 (1998), no. 3, pp. 367–402.

[2] , Locally finite varieties, Algebra Universalis, vol. 46 (2001), no. 4,
pp. 531–548.

[3] Guram Bezhanishvili and R. Grigolia, Locally tabular extensions of MIPC,
Advances in Modal Logic (Marcus Kracht, Maarten de Rijke, Heinrich Wansing and
Michael Zakharyaschev), CSLI Publications, 1998, pp. 101–120.

[4] Guram Bezhanishvili and Chase Meadors, Local finiteness in varieties of
MS4-algebras, The Journal of Symbolic Logic, Published online, (2024).

[5] Nick Bezhanishvili, Varieties of two-dimensional cylindric algebras. Part I:
Diagonal-free case, Algebra Universalis, vol. 48 (2002), no. 1, pp. 11–42.

[6] L. Henkin, J.D. Monk, and A. Tarski, Cylindric Algebras, part 1, Elsevier
Science, 1971.
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[7] L. Maksimova, Modal logics of finite slices, Algebra and Logic, vol. 14 (1975),
no. 3, pp. 304–319.

[8] K. Segerberg, An essay in classical modal logic, Filosofiska studier utgivna
av Filosofiska institutionen vid Stockholms universitet, vol. 13 (1971), no. 1.

[9] V. B. Shehtman, Squares of modal logics with additional connectives, Uspekhi
Matematicheskikh Nauk, vol. 67 (2012), pp. 129–186.

[10] Segerberg squares of modal logics and theories of relation algebras,
Larisa Maksimova on Implication, Interpolation, and Definability (Sergei
Odintsov), Springer International Publishing, Switzerland, 2018, pp. 245–296.

I SONJA SMETS, Reasoning about quantum information: the probabilistic logic of quan-
tum programs.
Institute of Logic, Language and Computation, University of Amsterdam, NL.
E-mail: s.j.l.smets@uva.nl.

To reason about quantum information, I introduce a probabilistic extension of the
Logic of Quantum Programs (LQP) in [2]. This framework is capable of expressing
important features of quantum measurements and unitary evolutions of multipartite
states. The logic [1, 3] includes dynamic modalities [π] (for quantum programs π),
spacial modalities (to talk about subsystems and local information) and a probabilistic
modality to capture the probability that a given test (of a quantum-testable property)
will succeed. The probabilistic ingredient greatly enhances the expressivity of the logic,
allowing us to use it for the specification and verification of probabilistic quantum pro-
tocols. In this presentation, I will explain the main ingredients of the logical system,
illustrate its application in quantum information theory and show that the logic, when
interpreted on finite-dimensional Hilbert spaces, is decidable. The results in this pre-
sentation are based on joint work with A. Baltag et al. in [1] and the decidability result
itself extends on an idea employed in the proof of [4].

[1] A. Baltag, J. Bergfeld, K. Kishida, J. Sack, S. Smets, and S. Zhong,
PLQP & Company: Decidable Logics for Quantum Algorithms, International Jour-
nal of Theoretical Physics, vol. 53 (2014), no. 10, pp. 3628–3647.

[2] A. Baltag and S. Smets, LQP: The Dynamic Logic of Quantum Information,
Special Issue on Quantum Programming Languages, Mathematical Structures in
Computer Science, vol. 16 (2006), no. 3, pp. 491–525.

[3] Reasoning About Quantum Information: An Overview of Quantum Dy-
namic Logic, Applied Sciences, Special Issue on Quantum Logics, vol. 12 (2022),
no. 9, paper 4458.

[4] M. Dunn, T.J. Hagge, L.S. Moss, and Z. Wang, Quantum Logic as Motivated
by Quantum Computing, The Journal of Symbolic Logic, vol. 70 (2005), no. 2,
pp. 353–359.

Abstracts of invited talks in the Special Session on

Model Theory

I AARON ANDERSON, Examples of distal metric structures.
Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadel-
phia, PA, 19104, USA.
E-mail: awanders@sas.upenn.edu.
URL Address: awainverse.github.io.

We identify several examples of distal metric structures and examine several conse-
quences of distality, such as the existence of distal cell decompositions, in each. These
results include joint work with Itäı Ben Yaacov and with Diego Bejarano.
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One class of examples starts with finding a metric structure whose automorphism
group is the group of increasing homeomorphisms of the unit interval. We will discuss
some properties of this structure and extrapolate to other models of its theory, which
we call “dual linear continua.”

Another source of examples includes real closed metric valued fields. These give rise
to a notion of ordered metric structure, providing a viewpoint to study o-minimality
in continuous logic.

I MICHELE BAILETTI, A walk on the wild side.
Mathematics & Computer Science Department, Wesleyan University, 265 Church Street
Middletown, CT, 06459-0128, USA.
E-mail: mbailetti@wesleyan.edu.

The tame sides of dividing lines are often defined by the absence of local combina-
torial properties. Using the concept of patterns of consistency and inconsistency, we
describe a general framework for talking about dividing lines. Taking this idea to its
limit, we introduce and study various notions of maximal complexity for first-order
theories.

I DIEGO BEJARANO, Definability and Scott rank in separable metric structures.
University of California, Berkeley.
E-mail: bejarano@berkeley.edu.

In [2], Ben Yaacov et. al. extended the basic ideas of Scott analysis to metric struc-
tures in infinitary continuous logic. These include back-and-forth relations, Scott sen-
tences, and the Lopez-Escobar theorem to name a few.

In this talk, I will talk my work connecting the ideas of Scott analysis to the de-
finability of automorphism orbits and a notion of isolation for types within separable
metric structures.

Our results are a continuous analogue of the robuster Scott rank developed by Mon-
talbán in [3] for countable structures in discrete infinitary logic. However, there are
some differences arising from the subtleties behind the notion of definability in contin-
uous logic.

[1] Diego Bejarano, Definability and Scott rank in separable metric structures,
arXiv.2411.01017.

[2] Itäı Ben Yaacov, Michal Doucha, Andre Nies, and Todor Tsankov,
Metric Scott analysis, Advances in Mathematics, vol. 318 (2017), pp.46–87.

[3] Antonio Montalbán, A robuster Scott rank, Proceedings of the American
Mathematical Society, vol.143 (2015), no.12, pp.5427–5436.

I BLAISE BOISSONNEAU, ARIS PAPADOPOULOS AND PIERRE TOUCHARD,
Mekler’s construction and Murphy’s law for 2-nilpotent groups.
Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf,
Germany.
E-mail: blaise.boissonneau@hhu.de.
Department of Mathematics, University of Maryland, College Park, USA.
E-mail: aris@umd.edu.
Institut für Algebra, Technische Universität Dresden, Germany.
E-mail: pierre.touchard@tu-dresden.de.

Given a model-theoretic dividing line admitting a combinatorial definition (think
“independence property”), it is relatively easy to construct a purely combinatorial
structure (by which I, of course, mean a graph) which lies precisely on one side of the
divide. However, constructing a purely algebraic structure (say a group) with the same
model-theoretic behaviour is, a priori, a somewhat more mysterious task.
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Mekler’s construction comes to the rescue, allowing us to build (2-nilpotent) groups
from (nice) graphs in a way that preserves the combinatorial complexity of the graph
we started with. This is, of course, ancient news.

In joint work with Boissonneau and Touchard we prove that the fact that Mekler’s
construction preserves dividing lines such as stability and NIP is no accident. These are
special cases of a more general theorem: Mekler’s construction preserves all dividing
lines admitting a definition through an “indiscernible collapse”.

The goal of my talk is to recall Mekler’s construction, gloss over a key relative
quantifier-elimination result, and discuss how when things can go wrong, they do.

I CHRISTINE EAGLES, A uniqueness condition for composition analyses.
Pure Mathematics, University of Waterloo, 200 University Avenue West Waterloo,
Ontario, Canada.
E-mail: ceagles@uwaterloo.ca.

It is well known that in stable theories, we can understand finite dimensional types
in terms of minimal types. We will talk about one one such method which we call a
composition analysis. We explore a uniqueness condition for a set of minimal types we
associate to a type through the composition analysis. This is based on current work in
progress.

I LÉO JIMENEZ, Internality of autonomous systems of differential equations.
Department of Mathematics, The Ohio State University, 100 Math Tower, 231 W 18th
Ave, Columbus, OH 43210, United States.
E-mail: jimenez.301@osu.edu.

When solving a differential equation, one sometimes finds that solutions can be ex-
pressed using a finite number of fixed, particular solutions, and some complex numbers.
As an example, the set of solutions of a linear differential equation is a finite-dimensional
complex vector space. This is an incarnation of the model-theoretic phenomenon of
internality to the constants in a differentially closed field of characteristic zero. In
this talk, I will discuss some recent progress, joint with Christine Eagles, on finding
methods to determine whether or not the solution set of a differential equation is in-
ternal. A corollary of our method also gives a criteria for solutions to be orthogonal to
the constants, and in particular not Liouvillian. I will show a concrete application to
Lotka-Volterra systems.

I MICHAEL C. LASKOWSKI AND DANIELLE S. ULRICH, Equivalents of NOTOP.
Department of Mathematics, University of Maryland, College Park, MD, USA.
E-mail: laskow@umd.edu.
E-mail: ds ulrich@hotmail.com.

A countable theory T is classifiable if it is superstable and has both NDOP and
NOTOP. For such theories, every model is determined up to isomorphism by an inde-
pendent tree of countable, elementary substructures. Historically, superstable theories
with NOTOP were only studied under the assumption of NDOP, but we prove that
countable, superstable theories with NOTOP are extremely well behaved. In particular,
models of such theories determined by an independent tree of countable, elementary
substructures up to back and forth equivalence.

Many equivalents of NOTOP are given, and we prove that for countable, superstable
theories, NOTOP implies PMOP, which was previously only known for theories with
NDOP.

I DAVID MERETZKY, Differential Galois theory with new algebraic constants.
Department of Mathematics, Univeristy of Notre Dame, Notre Dame, IN.
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E-mail: dmeretzk@nd.edu.
A well-known counterexample due to Seidenberg shows that Picard-Vessiot exten-

sions need not exist for arbitrary ordinary homogeneous linear differential equations
over arbitrary differential fields. A positive result from Kolchin’s school at around the
same time (1955-56) shows that inside of a differential closure one can always find a fun-
damental system of solutions to such an equation over the base field which introduces
a Galois extension’s worth of new constants. I will give a model theoretic account of
the structure of differential field extensions generated by fundamental systems of solu-
tions which introduce a finite (algebraic) extension’s worth of new constants, detailing
the relationship to the Galois groupoid arising from internality data, and describing a
partial Galois correspondence.

I LYNN SCOW, The modeling property.
Department of Mathematics, California State University, San Bernardino, CA, USA.
E-mail: lscow@csusb.edu.

The term the modeling property was coined in [1] to pull together different instances
of this phenomenon in the literature and thus create a general object of study. This
talk will give an overview of how this study has developed in the author’s own work
and indicate some new directions.

[1] L. Scow, Characterization theorems by generalized indiscernibles,
Ph.D. thesis, ProQuest LLC, 2010.

Abstracts of invited talks in the Special Session on

Proof Assistants

I MARIO CARNEIRO, NIKOLAI KUDASOV, EMILY RIEHL, DOMINIC VERITY,
AND JONATHAN WEINBERGER, Prospects for formalizing the theory of weak infinite-
dimensional categories.
Computer Science and Engineering, Chalmers University of Technology, 412 96 Gothen-
burg, Sweden.
Computer Science and Engineering, Innopolis University, 1 Universitetskaya Str, 420500
Innopolis, Russia.
Mathematics, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218,
USA.
E-mail: eriehl@jhu.edu.
URL Address: emilyriehl.github.io.
Mathematical Sciences Institute, Australian National University, Hanna Neumann Build-
ing #145, Science Road, Canberra ACT 2601, Australia.
Fowler School of Engineering & Center of Excellence in Computation, Algebra, and
Topology (CECAT), Chapman University, 1 University Drive, Orange, CA, 92866,
USA.

A peculiarity of the ∞-categories literature is that proofs are often written without
reference to a concrete definition of the concept of an∞-category, a practice that creates
an impediment to formalization. We describe three broad strategies that would make
∞-category theory formalizable, which may be described as “analytic,” “axiomatic,”
and “synthetic.” We then highlight two parallel ongoing collaborative efforts to for-
malize ∞-category theory in two different proof assistants: the “axiomatic” theory in
Lean and the “synthetic” theory in Rzk. We show some sample formalized proofs to
highlight the advantages and drawbacks of each approach and explain how you could
contribute to this effort.

[1] Nikolai Kudasov, Emily Riehl, and Jonathan Weinberger, Formalizing
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the ∞-categorical Yoneda lemma, CPP 2024: Proceedings of the 13th ACM SIG-
PLAN International Conference on Certified Programs and Proofs, (2024),
pp. 274–290.

[2] Emily Riehl and Dominic Verity, Elements of ∞-category theory, Cam-
bridge Studies in Advanced Mathematics (194), Cambridge University Press, 2022.

[3] Emily Riehl, Could ∞-category theory be taught to undergraduates, Notices of
the American Mathematical Society, vol. 70 (2023), no. 5, pp. 727–736.

I TALITHA HOLCOMBE, A common abstract syntax for total functional programming
and interactive theorem provers.
Fowler School of Engineering, Chapman University, 1 University Dr, United States of
America.
E-mail: holcombe@chapman.edu.

In this work, we introduce a program conversion tool, hs-to-lean, that uses GHC’s
ghc-lib-parser API to translate Haskell programs into Lean code, which is then validated
by the Lean compiler. The repo can be found at https://github.com/holcombet/

hs-to-lean/tree/main. The result is a successful compilation of a fragment of Haskell
into correct and executable Lean code that users can prove theorems about. Our
approach is inspired by recent advances in formal verification of Haskell programs in
Coq and, following [1], we currently restrict our attention to total Haskell.

Our compiler produces an AST that serves as a common level of abstraction between
a fragment of Haskell and various other theorem provers, including Lean, Coq, and
Agda. This allows a given Haskell program or fragment to be translated to a selection
of proof assistants, making it portable and accessible to a range of verification efforts.
The compilation of code fragments is bidirectional, supporting the translation of Haskell
code to a target proof assistant and vice versa. This method exposes an interesting
level of abstraction that is applicable to all of the languages involved and produces a
more maintainable compiler.

These results contribute to the ongoing work in the formalization and verification of
mathematics and programming and present a viable approach to unifying the formal
systems of different proof assistants.

[1] Antal Spector-Zabusky, Joachin Brietner, Christine Rizkalla, and
Stephanie Weirich, Total Haskell is Reasonable Coq, Proceedings of the 7th ACM
SIGPLAN International Conference on Certified Programs and Proofs (Los
Angeles, CA, USA), Association for Computing Machinery, 2018, pp. 14-27.

I PETER JIPSEN, Representability and formalization of relation algebras.
Mathematics, Chapman University, 1 University Dr, Orange, CA 92866, USA.
E-mail: jipsen@chapman.edu.
URL Address: www1.chapman.edu/~jipsen.

Abstract relation algebras were defined by Alfred Tarski in 1941 to capture the alge-
braic properties of binary relations. An interesting question is whether a given relation
algebra is representable as an algebra of binary relations. Donald Monk proved in 1964
that the theory of representable relation algebras is not finitely based, and Robin Hirsch
and Ian Hodkinson in 2001 showed that it is an undecidable problem whether a finite
relation algebra is representable. However, Roger Maddux’s concept of n-dimensional
bases and Steve Comer’s one-point extension method can prove (non)representability
for various small algebras. Both methods are based on a two-player game for rep-
resentability, and we revisit implementations of these algorithms and apply them to
relation algebras with up to 32 elements. In particular, to decide representability for
all relation algebras with 16 elements, the n-dimensional bases implementation was
used in 1993 to prove the nonrepresentability for the last two such algebras. Checking
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these proofs by hand is rather laborious but can now be done with the help of proof
assistants.

Lean is an interactive theorem prover that uses a formal language based on dependent
type theory to represent mathematics. Its library of definitions and theorems spans
many areas of mathematics, including parts of algebra, logic, order theory and category
theory. In joint work with Pace Nelson we develop the theory of relation algebras in
the Lean proof assistant. Lean is also an efficient functional programming language,
hence this is a useful platform for implementing algorithms and checking mathematical
results obtained by computer calculations. We report on the current state of our project
without assuming any background about Lean.

I PATRICIA JOHANN AND EDWARD MOREHOUSE, Deep induction and advanced
data types.
Department of Computer Science, Appalachian State University, Boone, NC 28608.
E-mail: johannp@appstate.org.

Deep induction provides induction rules for deep data types, i.e., data types that are
defined over, or mutually recursively with, (other) such data types. Whereas structural
induction traverses only the top-level structure of a data type, leaving any data internal
to the top-level structure untouched, deep induction inducts over all of the structured
data present. Deep induction was originally developed for the generalization of alge-
braic data types (ADTs) known as nested types in order to define structural induction
rules for bushes and other so-called truly nested types. In additional to solving this
long-standing problem, deep induction also gives genuinely useful induction rules for
deep ADTs such as rose trees. Deep induction has more recently been extended to
generalized algebraic data types (GADTs), such as exist in Haskell and Agda. This
talk will show how to further extend deep induction to even more advanced data types
like inductive families and inductive-inductive types. It will also explain how deep
induction can lead to simpler proofs in practice.

I LEONARDO DE MOURA, Verified collaboration: low Lean is transforming mathe-
matics, programming, and AI.
Automated Reasoning Group, Amazon Web Services.
E-mail: leodemoura0@gmail.com.

Imagine a world where mathematicians, programmers, and AI systems can collabo-
rate with complete trust in each other’s work. This is the promise of Lean, an open-
source project that’s transforming how we approach mathematics, software develop-
ment, and artificial intelligence. Lean provides machine-checkable proofs, eliminating
the need for manual verification and allowing humans and AI to build upon each
other’s work with unprecedented confidence. By addressing the “Trust Bottleneck,”
Lean opens doors to cross-disciplinary collaboration. In this talk, we’ll explore how
Lean is impacting these fields. We’ll see how it’s providing mathematicians with a
new way to construct and verify complex proofs, enabling software developers to rigor-
ously verify critical systems, and creating a foundation for more reliable AI for science
and mathematics. We’ll also discuss the role of the Lean Focused Research Organi-
zation (FRO), a non-profit dedicated to advancing Lean and growing its community.
The FRO is driving Lean’s development as both a proof assistant and an extensible
programming language, empowering users to customize its capabilities for diverse ap-
plications. Through real-world examples from academia and industry, we’ll discover
how Lean is paving the way for a more efficient, reliable, and collaborative future in
mathematics, software development, and AI.
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I WOJCIECH NAWROCKI, STEVE AWODEY, MARIO CARNEIRO, SINA HAZRAT-
POUR, JOSEPH HUA, AND SPENCER WOOLFSON, Compiling homotopy type the-
ory with Lean: syntax and interpretation.
Department of Philosophy, Carnegie Mellon University, Pittsburgh, USA.
E-mail: wjnawrocki@cmu.edu.
URL Address: https://voidma.in/.
Department of Philosophy, Carnegie Mellon University, Pittsburgh, USA.
Computing Science, Chalmers University of Technology, Göteborg, Sweden.
Harmonic, USA.
Department of Philosophy, Carnegie Mellon University, Pittsburgh, USA.
Department of Philosophy, Carnegie Mellon University, Pittsburgh, USA.

Synthetic theories simplify mathematical developments by providing domain-specific
languages and reasoning principles in which certain constructions become more direct.
They have also been found to facilitate strong automated reasoning [1]. Homotopy
type theory (HoTT) is a synthetic framework for abstract homotopy theory and higher
category theory [2]. Although many proof assistants, such as Cubical Agda, support
reasoning with synthetic theories, very few of the intended models of these synthetic
constructions have been formalized in a proof assistant. This makes it impossible to
formally establish results in classical mathematics using synthetic methods. Further-
more, interpretations of complex synthetic constructions can be difficult to compute
by hand.

To demonstrate that proof assistants can assist in interpreting synthetic proofs, we
are formalizing the model theory of HoTT0, a simplified fragment of HoTT (with a
restricted univalence axiom), in Lean. The system HoTT0 can be interpreted in the
category of groupoids, a construction known as the groupoid model [2]. In this talk,
we present ongoing work that implements HoTT0 as an embedded domain-specific
language in Lean. Using the prover’s extensible syntax and metaprogramming facilities
[4], our aim is to provide users with a library of macros that allow unfolding synthetic
HoTT0 constructions into elements of the model, and soundly transferring HoTT0
proofs to classical proofs of statements about groupoids. Our code is available at
https://sinhp.github.io/groupoid model in lean4/.

[1] Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong,
Solving olympiad geometry without human demonstrations, Nature, vol. 625 (2024),
no. 7995, pp. 476–482.

[2] The Univalent Foundations Program, Homotopy Type Theory:
Univalent Foundations of Mathematics, Institute for Advanced Study,
https://homotopytypetheory.org/book, 2013.

[3] Martin Hofmann and Thomas Streicher, The groupoid interpretation of type
theory, Twenty-five years of constructive type theory (Venice, 1995), vol. 36,
pp. 83–111, 1998.

[4] Sebastian Ullrich and Leonardo de Moura, Beyond Notations: Hygienic
Macro Expansion for Theorem Proving Languages, Automated Reasoning - 10th
International Joint Conference, IJCAR 2020 (Paris, France, July 1-4, 2020),
2020, pp. 167–182.

I EGBERT RIJKE, Mathematical structures from a univalent point of view.
Department of Mathematics, Johns Hopkins University.
E-mail: e.m.rijke@gmail.com.

Libraries of formalized mathematics, as well as the communities working on them,
are rapidly growing. Such libraries are written in computer programs called proof as-
sistants, which help the user with verifying the correctness of constructions and proofs.
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However, most of the modern proof assistants are based on a foundational system
called type theory, which is somewhat different from the de facto foundational sys-
tem of mathematics, first order logic. Type theory allows for new ways of thinking
about mathematics, and one of these ways is using an axiom of Vladimir Voevodsky,
the univalent axiom. This axiom expands the notion of equality of mathematical ob-
jects so that it coincides with isomorphisms. Mathematicians are used to considering
isomorphic objects to be the same for practical purposes, and the univalent axiom for-
malizes this principle. The univalent axiom changes the way we should think of some
mathematical concepts, and in this talk, I will explore some of the basic ways in which
mathematics is done from a univalent point of view.

I MICHAEL SHULMAN, An observational proof assistant for higher-dimensional math-
ematics.
Department of Mathematics, University of San Diego, 5998 Alcala Park, San Diego,
CA, 92110, USA.
E-mail: shulman@sandiego.edu.
URL Address: http://www.sandiego.edu/ shulman.

In higher-dimensional type theories, each type has not just ordinary terms but also
a structure of higher-dimensional terms, such as an ∞-groupoid or homotopy space
(homotopy type theory [6]), a cubical set (parametric type theory [2]), or a semi-
simplicial set (displayed type theory [5]). These theories provide new and powerful
reasoning tools for formalizing and working with higher structures.

Existing computational higher-dimensional type theories (e.g., [4, 3, 7]) are interval-
based, meaning the higher structure is detected by mapping out of an “interval type”.
An alternative is an observational theory, in which the higher structure is defined
separately type-by-type; e.g., in homotopy type theory a path in a product type is a
pair of paths, while a path between functions is a homotopy, and a path between types
is an equivalence (the univalence axiom).

In this talk I will introduce a prototype proof assistant called Narya that imple-
ments observational higher-dimensional type theories, including higher observational
type theory (the observational version of homotopy type theory), and sketch what we
know about its metatheory (e.g., [1]). This is joint work with Thorsten Altenkirch and
Ambrus Kaposi.

[1] Thorsten Altenkirch, Yorgo Chamoun, Ambrus Kaposi, and Michael
Shulman, Internal parametricity, without an interval, Principles of Programming
Languages 2024, Proceedings of the ACM on Programming Languages, (Michael
Hicks, editor), vol 8, 2024, pp. 2340–2369.

[2] Jean-Philippe Bernardy and Guilhem Moulin, A computational interpreta-
tion of parametricity, Proceedings of the 2012 27th Annual IEEE/ACM Sympo-
sium on Logic in Computer Science, IEEE Computer Society, 2012, pp. 135–144.

[3] Evan Cavallo and Robert Harper, Internal parametricity for cubical type
theory, 28th EACSL Annual Conference on Computer Science Logic (CSL
2020) (Maribel Fernández and Anca Muscholl, editors), Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 152, Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, Dagstuhl, Germany, 2020, pp. 13:1–13:17.

[4] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg,
Cubical type theory: a constructive interpretation of the univalence axiom,
arXiv:1611.02108 (2016).

[5] Astra Kolomatskaia and Michael Shulman, Displayed type theory and
semi-simplicial types, arXiv:2311.18781 (2023).

[6] Univalent Foundations Program, Homotopy Type Theory: Univalent
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Foundations of Mathematics, http://homotopytypetheory.org/book/, 2013.
[7] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel, Cubical Agda: A

dependently typed programming language with univalence and higher inductive types,
Proceedings of the ACM an Programming Languages, vol. 3 (2019), pp. 87:1–
87:29.

I AEACUS SHENG, Formally verifying automata for trusted decision procedures.
Department of Philosophy, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh,
PA 15213, United States of America.
E-mail: zhaobos@andrew.cmu.edu.

Automata-theoretic decision procedures date back to Büchi’s work, leveraging finite
automata to decide sentences of Presburger arithmetic [1][2]. Extensions of the original
procedure are now used to check and discover theorems in combinatorics and number
theory [4]. However, unlike SAT solvers, which provide verifiable proof certificates,
automata-based decision procedures do not generate formal correctness guarantees as
they run. As a result, despite their practical success, concerns remain regarding the
reliability and trustworthiness of results obtained using automata-based decision pro-
cedures.

Towards addressing this issue, we present our ongoing effort to implement and for-
mally verify automata in Lean [3], which is both a proof assistant and a programming
language. By formalizing efficiently-executable automata and proving their proper-
ties, we want to ensure that automata-theoretic decision procedures are both provably
correct and practically useful.

We begin by introducing the mathematical logic contents behind these decision pro-
cedures and provide motivating examples on the type of problems they can solve. Then,
we present and explain our implementation and verification of automata in Lean. In
the end, we give a preliminary demonstration of how to use our work to prove theorems
in Lean.

[1] J. Richard Büchi, Weak second-order arithmetic and finite automata,
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 6
(1960), pp. 66–92. Reprinted in S. Mac Lane and D. Siefkes, editors, The Collected
Works of J. Richard Büchi, Springer-Verlag, 1990, pp. 398–424.

[2] J. Richard Büchi, On a decision method in restricted second-order arithmetic,
Logic, Methodology and Philosophy of Science (Proc. 1960 International Con-
gress), Stanford University Press, 1962, pp. 1–11.

[3] Leonardo de Moura and Sebastian Ullrich, The Lean 4 Theorem Prover
and Programming Language, Automated Deduction – CADE 28: 28th Interna-
tional Conference on Automated Deduction, Virtual Event, July 12–15, 2021,
Proceedings (Berlin, Heidelberg), Springer-Verlag, 2021, pp. 625–635.

[4] Jeffrey Shallit, The Logical Approach to Automatic Sequences: Explor-
ing Combinatorics on Words with Walnut, London Mathematical Society Lecture
Note Series, Cambridge University Press, Cambridge, 2022.

I SPENCER WOOLFSON, STEVE AWODEY, MARIO CARNEIRO, SINA HAZRAT-
POUR, JOSEPH HUA, AND WOJCIECH NAWROCKI, Compiling homotopy type
theory with Lean: the groupoid model of HoTT0.
Department of Philosophy, Carnegie Mellon University, Pittsburgh, USA.
E-mail: swoolfso@andrew.cmu.edu.

Homotopy type theory (HoTT) is a powerful system for formal mathematics [1]. Yet,
without invoking metamathematics, its theorems are detached from classical mathe-
matics, limiting their applicability. Our collaborative project aims to bridge this gap
by developing a formal compiler that automatically translates HoTT proofs into Lean
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theorems.
We focus on a fragment of HoTT, termed HoTT0, with a semantic interpretation

into the category of 1-groupoids. HoTT0 restricts the univalence axiom to only hold
on subuniverses of 0-truncated types (i.e. sets). Despite its limiting appearance, this
suffices to develop significant portions of univalent, set-level mathematics expressible
in HoTT. Building on prior work that modeled type theory in 1-groupoids using cat-
egories with families [2], we adapt this approach to natural model semantics [3] based
on polynomial functors [4]. The natural model semantics are modular, allowing for
implementations of other models of HoTT. This project also lays the groundwork for
compiling other type theories in Lean.

In this talk, I plan to discuss the formal system HoTT0, its 1-groupoid model, and
show how some syntactic statements can be translated into classical proofs. I will also
discuss what is gained by working in HoTT0, as opposed to extensional Martin-Löf
type theory. I hope this talk can demonstrate how Lean can be adapted to work in
novel ways to fit the needs of different researchers.

[1] The Univalent Foundations Program, Homotopy Type Theory:
Univalent Foundations of Mathematics, Institute for Advanced Study,
https://homotopytypetheory.org/book, 2013.

[2] Martin Hofmann and Thomas Streicher, The groupoid interpretation of type
theory, Twenty-five years of constructive type theory (Venice, 1995), vol. 36,
pp. 83–111, 1998.

[3] Steve Awodey, Natural models of homotopy type theory, Mathematical Struc-
tures in Computer Science, vol. 28, no. 2, pp. 241-286, 2018.

[4] Nicola Gambino and Joachim Kock, Polynomial functors and polynomial
monads, Mathematical proceedings of the Cambridge philosophical society,
vol. 154, no. 1, pp. 153–192, Cambridge University Press, 2013.
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I WILLIAM ADKISSON, Tree properties at successors of singulars of many different
cofinalities.
Department of Mathematics, University of California Los Angeles, 520 Portola Plaza,
Los Angeles CA, USA.
E-mail: adkisson@math.ucla.edu.

An old problem of Magidor is to obtain the tree property at every regular cardinal
greater than ℵ1. This question can also be posed for strengthenings of the tree property.
If there is to be a positive answer to this question, we must obtain the tree property at
many successors of singular cardinals; in particular, we must obtain the tree property
at successors of singular cardinals of many different cofinalities. Motivated by this
problem, from many supercompacts we build a model in which the tree property holds
at ℵω+ω+1 and ℵωi+1 for all 0 < i < ω simultaneously. This construction can be
modified to obtain the strong tree property, a strengthening of the tree property that
is closely linked with strongly compact cardinals; it can be modified further to obtain
these properties for much longer sequences of desired cofinalities.

I ANTON BERNSHTEYN, Borel Local Lemma for graphs of slow growth.
Department of Mathematics, University of California, Los Angeles.
E-mail: bernshteyn@math.ucla.edu.

The Lovász Local Lemma is an important tool in probabilistic combinatorics. Roughly
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speaking, it shows the existence of a function satisfying certain combinatorial con-
straints by checking a set of numerical conditions. In addition to its importance in
combinatorics, the Local Lemma has recently found applications in many other fields,
such as ergodic theory. In this talk, we address the following question: When can we
choose the function whose existence is guaranteed by the Local Lemma to be Borel?
Csóka, Grabowski, Máthé, Pikhurko, and Tyros proved a Borel version of the Lo-
cal Lemma under the assumption that a certain auxiliary graph is of subexponential
growth. Unfortunately, their proof only works when the range of the desired function
is finite. Using a different approach, we extend their result to the case of continuous
range as well as to graphs of limited exponential growth. This is joint work with Jing
Yu.

I FILIPPO CALDERONI, Idealistic equivalence relations remastered.
Department of Mathematics, Rutgers University, Hill Center for the Mathematical
Sciences, 110 Frelinghuysen Rd., Piscataway, New Jersey 08854-8019.
E-mail: filippo.calderoni@rutgers.edu.
URL Address: https://sites.math.rutgers.edu/ fc327/.

Howard Becker[1] proved that under analytic determinacy there exists an idealistic
equivalence relation that is not an orbit equivalence relation. In this talk we discuss a
strengthening of Becker’s result:

Theorem. Assume analytic determinacy. Then there exists an idealistic equivalence
relation E that is not class-wise Borel embeddable into any orbit equivalence relation.

This work aims at better understanding the nuances between idealistic and orbit
equivalence relations. Along the way we explain how this is related to the long-standing
E1 conjecture initially formulated by Kechris and Louveau [2]. This is joint work with
Luca Motto Ros.

[1] Howard Becker. Idealistic equivalence relations, Unpublished notes,
2001.

[2] Alexander S. Kechris and Alain Louveu, The classification of hypersmooth
borel equivalence relations, Journal of the American Mathematical Society, vol. 10
(1997), no. 1, pp. 215–242.

I RUIYUAN CHEN, Topology versus Borel structure for actions, equivalence relations,
and groupoids.
Department of Mathematics, University of Michigan, 530 Church St., Ann Arbor,
Michigan, USA.
E-mail: ruiyuan@umich.edu.

The Becker–Kechris theorem characterizes the topological rigidity intrinsic to a Borel
action of a Polish group as consisting of precisely the quotient topologies on each orbit.
We show that conversely, every Borel equivalence relation (or more generally, standard
Borel groupoid) equipped with a “Borel family” of Polish topologies on each class,
satisfying suitable axioms, may be represented in terms of a Polish group action.

I JAMES CUMMINGS, Linear orderings and singular cardinal combinatorics.
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA
15213.
E-mail: jcumming@andrew.cmu.edu.

We prove some results about linear orderings with cardinality the successor of a
singular cardinal, using ideas from singular cardinal combinatorics.

I NATASHA DOBRINEN, Ramsey spaces and their ultrafilters.
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Department of Mathematics, University of Notre Dame.
E-mail: ndobrine@d.edu.

Many classes of topological Ramsey spaces give rise to ultrafilters with partition
properties. On the flip side, sometimes forcings that produce ultrafilters with partition
properties harbor a topological Ramsey space as a dense subset. The added clarity
of Ramsey space techniques allow for fine analysis of the properties of such ultrafil-
ters. In this talk, we will discuss special properties of such ultrafilters such as initial
Rudin-Keisler and Tukey structures, complete combinatorics, barren extensions, and
preservation under Sacks forcing. We will touch on works of Di Prisco, Dobrinen,
Hathaway, Mijares, Nieto, Navarro Flores, Özalp, Todorcevic, Trujillo, and Zheng, and
discuss ongoing work of the speaker.

I EYAL KAPLAN, Failure of GCH on a measurable with the Ultrapower Axiom.
Department of Mathematics, University of California, Berkeley, University Dr, Berke-
ley, California.
E-mail: eyalkaplan@berkeley.edu.

The Ultrapower Axiom (UA) states that any pair of ultrapowers can be compared by
internal ultrapowers. The Axiom was extensively studied by Gabriel Goldberg, leading
to a series of striking results.

Goldberg asked whether UA is consistent with a measurable cardinal that violates
GCH. The main challenge is that UA is not easily preserved under forcing constructions,
especially ones that achieve violation of GCH on a measurable from large cardinal
assumptions. For example, such forcings might create normal measures which are
incomparable in the Mitchell order – a property that negates UA.

In this talk, we will present a recent result that shows that the failure of GCH on
the least measurable cardinal can indeed be forced while preserving UA, starting from
the minimal canonical inner model carrying a (κ, κ++)-extender. This is a joint work
with Omer Ben-Neria.

I MAXWELL LEVINE, Namba Forcing and Singular Cardinals.
Department of Mathematics, University of Freiburg, Germany.
E-mail: maxwell.levine@mathematik.uni-freiburg.de.

One way to study the properties of the infinite cardinals is to examine the extent
to which they can be changed by forcing, and the extent to which this process can be
controlled. In 1969 and 1970, Bukovský and Namba independently showed that ℵ2 can
be forced to be an ordinal of cofinality ℵ0 without collapsing ℵ1. The forcings they used
and their variants are now known as Namba forcing. We will discuss some surprising
connections between Namba forcing and the theory of singular cardinals like ℵω.

I CHRISTIAN ROSENDAL AND JENNA ZOMBACK, Asymptotically spherical groups.
Department of Mathematics, University of Maryland, College Park.
E-mail: zomback@umd.edu.

A length function ` on a group G is a function from G to the nonnegative real
numbers satisfying the following for all group elements x and y: `(x) = 0 if and only if
x = 1G, `(x−1) = `(x), and `(xy) ≤ `(x) + `(y).

In this talk, we will investigate the asymptotic behavior of compatible length func-
tions on Polish groups, and in particular, the extent to which a sphere of large radius
with respect to one length function looks spherical with respect to another. This is
joint work with Christian Rosendal.

I RILEY THORNTON, Measurable nibbling and hypergraph limits.
Carnegie Mellon University, Department of Mathematics, 5000 Forbes Ave, Pittsburgh,
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PA, USA.
E-mail: rthornto@andrew.cmu.edu.

The Frankl–Rödl matching theorem says that, in any sparse enough regular hyper-
graph of large enough degree, there’s matching that covers almost all of the vertices.
It was one of the first applications of Rödl’s (now ubiquitous) nibble method. In this
talk, I will prove a measurable version of the Frankl–Rödl theorem using a measurable
version of the nibble method and some results about weak containment for hypergraphs.

[1] Riley Thornton, Limits of sparse hypergraphs, arXiv.2410.17483, 2024.

Abstracts of contributed talks

I SAPIR BEN-SHAHAR, ROD DOWNEY, AND MARIYA SOSKOVA, On Quasi-reducibility
for c.e. sets.
Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive,
Madison, WI 53706, USA.
E-mail: sbenshahar@wisc.edu.
Department of Mathematics, Victoria University of Wellington, Kelburn Parade, Kel-
burn, Wellington 6012, New Zealand.
E-mail: rod.downey@vuw.ac.nz.
Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive,
Madison, WI 53706, USA.
E-mail: soskova@wisc.edu.

Strong reducibilities naturally arise in the combinatorics of reductions in classical
mathematics. They are important for at least two reasons: they give insight into exactly
how reductions work in practice; and in many cases a strong reducibility may be more
appropriate for a specific area. Quasi-reducibility was introduced by Tennenbaum in
the 1960s. On c.e. sets it coincides with ∗-reducibility, which was shown to be relevant
to existentially closed groups in work of Belegradek [1]. Strong Quasi-reducibility was
introduced and studied by Omanadze [2]. I will introduce Quasi-reducibility and strong
Quasi-reducibility and discuss some recent results on the structures of the c.e. degrees
that arise from these reducibilities. This is joint work with Rod Downey and Mariya
Soskova.

[1] Belegradek, O. V., Algebraically closed groups, Algebra i Logika, vol. 13
(1974), pp. 239–255, 363.

[2] Omanadze, Roland Sh., Quasi-degrees of recursively enumerable sets, Com-
putability and models, Kluwer/Plenum, New York, 2003, pp. 289–319.

I MORGAN BRYANT, Merges of smooth classes and their properties.
Department of Mathematics, University of Maryland, 4176 Campus Drive, College
Park, MD, USA.
E-mail: mbryant7@umd.edu.

Given two Fräıssé-like classes, known as smooth classes, each with countable generic
limits (a generalization of a Fräıssé limit), we ask whether we can merge the two
classes into a new smooth class with a generic limit. We then study which model
theoretic properties of the generics of the original classes transfer to the generic of the
new class, when it exists. In a different direction, we discuss how merges of smooth
classes connect to structural Ramsey theory and the Hrushovski property (also known
as EPPA). Generalizing work done in [1], we give some examples of merges of smooth
classes which have EPPA and the Ramsey property.

[1] David Evans, Jan Hubička, and Jaroslav Nešetřil, Automorphism groups
and Ramsey properties of sparse graphs, Proceedings of the London Mathematical
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Society, vol. 119 (2019), no. 2, pp. 515–546.

I RONALD FULLER, A new kind of information.
Institute for Logic and the Public Interest, 15600 Redmond Way, Ste 101, Redmond,
WA 98052.
E-mail: rgfuller@logicrules.org.

In his famous essay On Denoting, Bertrand Russell called Frege’s distinction between
sense and reference “an inextricable tangle.” Others have agreed. Frank Ramsey re-
ferred to Russell’s essay as “that paradigm of philosophy”, and according to the Stan-
ford Encyclopedia of Philosophy, Ramsey might just as easily have said “the paradigm
of philosophy.” So experts have viewed Russell’s denial of Frege’s model of semantics,
and the ideas built around this denial, as a definitive perspective, and perhaps the
definitive perspective, on the entire edifice of philosophy. The consequences have been
disastrous.

Russell’s entrenched influence on the philosophy of information has left a hole in
our understanding of semantics. Schmid and Swenson puzzled over this hole, asking
“What does it mean to collect attributes into a relation? . . . This is one of the
rather important questions that can hardly be answered from the mathematical point
of view. . . ” [1]. The absence of a foundational theory of semantics for the structure
of information has been a root cause, I argue, of the most difficult challenges facing
modern organizations – one of which, data quality, costs organizations $3 trillion per
year [3].

The theory of sophotaxis [2] provides an adequate account of semantics for the struc-
ture of information and can inform solutions to these challenges. Examples are shown,
and a revised definition of semantic information is given.

[1] Schmid, Hans Albrecht, and J. Richard Swenson, On the Semantics of the
Relational Data Model, Proceedings of the 1975 ACM SIGMOD International
Conference on Management of Data (San Jose, CA), Association for Computing
Machinery, 1975, pp. 211–223.

[2] Fuller, Ronald, and Peter Cardon, Sophotaxis, The Bulletin of Symbolic
Logic, vol. 23 (2016), no. 1, pp. 128–129.

[3] Redman, Thomas C., Bad Data Costs the U.S. 3 Trillion Per Year, Harvard
Business Review, September 22, 2016.

I ELIJAH GADSBY, Properties of selector proofs.
Graduate Center CUNY, 365 Fifth Ave., New York City, NY 10016, USA.
E-mail: egadsby@gradcenter.cuny.edu.

A serial property is a suitably enumerated sequence {Fn} of sentences and is called
selector provable in PA if there is a PA-recursive function s(x) such that PA `
∀x(s(x):pFxq) where x:y is a suitable proof predicate. These notions were introduced
by Artemov in his analysis of the formalization of metamathematics, the topic of his
plenary talk. In particular, he argues that the consistency of PA is best represented
as a serial property and, as such, is selector provable in PA.

This talk will give an overview of the mathematical properties of selector proofs,
focusing on the case where the serial property consists of all instances of a single
formula. Along the way, it will be seen that iterated selector proofs can be collapsed
into single ones, so that natural attempts to extend Artemov’s program along these
lines cannot succeed. Furthermore, while primitive recursive selectors are more than
sufficient in natural cases, serial properties can be constructed that require arbitrarily
complex selectors. Finally, a brief survey of some relevant results from the literature
will be given. From these, it can be seen that while PA cannot selector prove the
consistency of PA + Con(PA), there are infinitely many proper extensions of PA
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whose consistency is selector provable in PA.

I ARZHANG KAMAREI, Using paradoxical conditionals to reify and imply a semantic
fixed point for Godel’s G in first order arithmetic.
Kamarei Advisory, Spaces, 41 Flatbush Avenue, Brooklyn, NY 11217.
E-mail: ak@kamareiadvisory.com.

Computational models of consciousness do not seem to adequately address the po-
tential logical impossibility of non-Tarskian, Cogito-style, self-referential truth pred-
icates (e.g., “I think, therefore I am”). To address this gap, this paper attempts
to push the envelope on first order arithmetic (FOA) self-referential logic, targeting
a semantic fixed point for Gödel’s G. We first assume two semantic conditionals,
reifying the semantic logical ontology of G: (a) ¬Prov(pGq) → Prov(pGq) and (b)
Prov(pGq) → ¬Prov(pGq). We next show these can only be satisfied by a unique
syntactic fixed point, G = ¬Prov(pGq). Since this fixed point is paradoxical and self-
referential, it’s syntax and semantics cannot be determined by a consistent system P
and G will not characterize Prov(x) for any such x 6= G. This then creates a unique
syntactic-semantic tuple or fixed point characterized as G ≡ ¬Prov(pGq), where: (i)
the semantic conditionals only match this syntactic definition, (ii) the syntax also im-
plies the semantic conditions, and (iii) whose syntactic definition matches Godel’s G.
Because the semantics are not derived from the syntax, we can formalize this equiva-
lence in FOA without violating the Hilbert–Bernays–Löb conditions or conflicting with
Löb’s Theorem. This creates a constructive version of Gödel’s First Incompleteness
Theorem in FOA. Given that G is a unique fixed point, we can then take the com-
plement or negation of G, which may imply the existence of ”normal” formulas, i.e.,
¬¬Prov(pGq) implies Prov. If so, this implies constructively that P ` Prov(pxq) → x
for all such x 6= G, i.e., ¬G→ [Prov(x)→ x]. This thus bifurcates the universe of for-
mulas into G and ¬G, showing that they can have differently determined relationships
between truth and proof and which are constructible. This may help open the door to
self-referential logics which may be necessary for the digitization of Cogito.

I BJØRN KJOS-HANSSEN, The Shannon effect.
Department of Mathematics, University of Hawai‘i at Mānoa, Honolulu, HI 96822.
E-mail: bjoernkh@hawaii.edu.

In many settings, almost all objects have nearly the same complexity as the hardest
objects.

Specifically, Claude Shannon conjectured [3] that almost all Boolean functions have
nearly the same circuit complexity as the hardest function. It was proved by Lupanov
[2]. Similar statements hold for plain and prefix-free Kolmogorov complexity. The
phenomenon was named the Shannon effect by Lupanov in 1970.

For nondeterministic automatic complexity, the effect follows from an upper bound
by Hyde from 2013 and an almost sure lower bound by Kjos-Hanssen in 2021.

The nondeterministic automatic complexity also has an “exact” version, in which a
single accepting path is not required, merely a single accepted word of a given length.
For this notion, a Shannon effect has been proved as well [1].

Whether the effect pertains to deterministic automatic complexity is not known.

[1] Joey Chen, Bjørn Kjos-Hanssen, Ivan Koswara, Linus Richter, and
Frank Stephan, Languages of words of low automatic complexity are hard to compute,
submitted, 2025.

[2] O. B. Lupanov, The synthesis of contact circuits, Doklady Akademii Nauk
SSSR (N.S.), 119:23–26, 1958.

[3] Claude E. Shannon, The synthesis of two-terminal switching circuits, Bell
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System Technical Journal, 28:59–98, 1949.

I CONNOR LOCKHART, Model theory of the Farey graph via smooth classes.
Department of Mathematics, University of Maryland, 4176 Campus Dr, College Park,
MD, USA.
E-mail: connorl@umd.edu.

We study the model theory of the Farey graph F by realizing it as the generic of a
smooth class (K,≤). By varying the relation ≤ we may obtain distinct generics that are
either atomic or saturated. This will allow us to demonstrate a quantifier elimination
for Th(F ). The Farey graph is also the simplest nontrivial curve complex of a surface,
where F = C(Σ1,1). Modifications of this technique to obtain results for the general
model theory of the curve complex C(Σg,n) will be discussed.

I JUAN AGUILERA AND ROBERT S. LUBARSKY, On strategies for player II in Σ0
2

games.
Institute of Discrete Mathematics and Geometry, Vienna University of Technology,
Austria, and Department of Mathematics, Ghent University, Belgium.
E-mail: aguilera@logic.at.
Dept. of Mathematical Sciences, Florida Atlantic University, 777 Glades Rd., Boca
Raton FL 33431, USA.
E-mail: robertlubarsky@att.net.

That certain strategies for Player II in Σ0
2 games are always winning can be witnessed

in L by certain ordinals. There is already a known description of these ordinals. What is
less understood is where the strategies themselves appear. What is also not understood
is the model theory Player II would use in these strategies. This talk is an introduction
to this topic, with the goal of conveying these open questions and some of the ideas
around them.

[1] Fred Abramson and Gerald Sacks, Uncountable Gandy Ordinals, Journal
of the London Mathematical Society, vol. 14 (1976), no. 2, pp. 387–392

[2] Juan Aguilera and Robert Lubarsky, On winning strategies for Fσ games,
The Journal of Symbolic Logic, to appear.

[3] Richard Gostanian, The Next Admissible Ordinal, Annals of Mathematical
Logic, vol. 17 (1979), pp. 171–203

[4] Christoph Heinatsch and Michael Möllerfeld, The determinacy strength
of Π1

2-comprehension, Annals of Pure and Applied Logic, vol. 161 (2010), pp. 1462–
1470

[5] Yiannis Moschovakis, Descriptive Set Theory, 2nd edition, American Mathe-
matical Society, 2009

[6] P. Wolfe, The strict determinateness of certain infinite games, Pacific Jour-
nal of Mathematics, vol. 5 (1955), pp. 841-847

I TAN OZALP, Initial Tukey structure below a stable ordered-union ultrafilter.
Department of Mathematics, 255 Hurley Building, Notre Dame, IN 46556 USA.
E-mail: aozalp@nd.edu.

For arbitrary partial orders (P,≤P) and (Q,≤Q), (P,≤P) is said to be Tukey reducible
to (Q,≤Q), written (P,≤P) ≤T (Q,≤Q), if there is a map f : Q→ P which sends cofinal
subsets of Q to cofinal subsets of P. In particular, we can restrict our attention to
directed partial orders of the form (U ,⊇), where U is an ultrafilter. In this case, Tukey
reducibility generalizes RK-reducibility.

A detailed study of the Tukey order of ultrafilters on countable sets was initiated
by Dobrinen and Todorcevic in [2]. Later, Todorcevic proved that Ramsey ultrafilters
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are Tukey-minimal ([5]). This study continued with Dobrinen and Todorcevic’s clas-
sification of isomorphism classes of ultrafilters Tukey reducible to a weakly Ramsey
ultrafilter ([3]). The rest of this line of work and more detailed information can be
found in [1]

Dobrinen and Todorcevic asked the question of classification of ultrafilters Tukey
reducible to a stable ordered-union ultrafilter ([2]). The goal of this talk will be to
introduce stable ordered-union ultrafilters on FIN, and state the classification of all
ultrafilters Tukey reducible to a stable ordered-union U . This is the main result of [4],
and answers a question from [2]. I will also talk about the techniques that were used in
the proof of this classification, and finish with remarks on a canonization theorem for

FIN
[∞]
2 that I am currently finalizing, that will be used to classify all ultrafilters Tukey

reducible to the ultrafilter forced by FIN
[∞]
2 .

[1] N. Dobrinen, Topological Ramsey spaces dense in forcings, Structure and
Randomness in Computability and Set Theory World Scientific Publishing, Hack-
ensack, NJ, 2020, pp. 3–58.

[2] N. Dobrinen and S. Todorcevic, Tukey types of ultrafilters, Illinois Journal
of Mathematics, vol. 55 (2011), no. 3, pp. 907–951.

[3] A new class of Ramsey-classification theorems and their application in the
Tukey theory of ultrafilters, Part 1, Transactions of the American Mathematical
Society, vol. 366 (2014), no. 3, pp. 1659–1684.

[4] T. Ozalp, Initial Tukey structure below a stable ordered-union ultrafilter,
arXiv:2410.04326 (2024).

[5] D. Raghavan and S. Todorcevic, Cofinal types of ultrafilters, Annals of
Pure and Applied Logic, vol. 163 (2012), no. 3, pp. 185–199.

I JACKSON WEST, Farness logics of Euclidean spaces.
Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM.
E-mail: jackwest@nmsu.edu.

In any metric space (X, d), we can define the far relation R by

xRy ⇐⇒ d(x, y) > 1.

This relation gives a uni-modal logic of (X, d) which is known as the farness logic of
(X, d), denoted by Log>1(X). In this talk, I will present results on the farness logics
of Rn and Qn, recently obtained in a joint work with Gabriel Agnew, Uzias Gutierrez-
Hougardy, John Harding, and Ilya Shapirovsky [1].

Namely, we show that the farness logics of Rn are all distinct and contain an infinite
anti-chain. In particular, for n < m, we have Log>1(Rm) 6⊆ Log>1(Rn). Additionally,
for m sufficiently larger than n we have Log>1(Rn) 6⊆ Log>1(Rm). We also show that
the logics Log>1(Rn) and Log>1(Qn) are not finitely axiomatizable and Log>1(Q) is
strictly contained in Log>1(R). Furthermore, Log>1(R) lacks the finite model property.

This work was supported by NSF Grant DMS - 2231414.

[1] Gabriel Agnew, Uzias Gutierrez-Hougardy, John Harding, Ilya
Shapirovsky, and Jackson West, On distance logics of Euclidean spaces,
arXiv:2501.04884, 2025.

I HONGYU ZHU, The Borel complexity of the class of models of first-order theories.
Department of Mathematics, University of Wisconsin–Madison, Van Vleck Hall, 480
Lincoln Dr, Madison, WI 53706, USA.
E-mail: hongyu@math.wisc.edu.

Viewed as a subset of Cantor space, the class of countable models Mod(T ) of any first
order theory T is always Borel. A natural question, then, is the relationship between its
descriptive complexity and the complexity of the underlying theory. Using theorems of

40



López-Escobar and Solovay, we give a more precise characterization of the complexity
of Mod(T ) in terms of that of T . We also discuss some applications to models of PA
and infinitary logic. (This is based on joint work with Andrews, Gonzalez, Lempp,
Rossegger [1], and related to recent work of Enayat and Visser [2].)

[1] Uri Andrews, David Gonzalez, Steffen Lempp, Dino Rossegger, and
Hongyu Zhu, The Borel complexity of the class of models of first-order theories,
arXiv:2402.10029, 2024.

[2] Ali Enayat and Albert Visser, Incompleteness of boundedly axiomatizable
theories, Proceedings of the American Mathematical Society, vol. 152 (2024),
no. 11, pp. 4923–4932.

Abstracts of talks presented by title

I JOACHIM MUELLER-THEYS, The monotonicity paradox and its solution.
Independent Scholar, Heidelberg, Germany.
E-mail: mueller-theys@gmx.de.

I. It is a truism that laws must not be simply extended. Substitution is a meta-
theorem of propositional logic, which becomes false in our metalogical (or auto-modal
repectively) extensions MPL: ¬2p is logically true (since p can be interpreted false),
but ¬2> is not. The same happens to monotonicity : ¬2p is no consequence of p.

II. In contrast, we found and proved that monotonicity belongs to the valid principles
of universal semantics: ∀f ∈ S (F SeqT f & G ⊇ F ⇒ G SeqT f) (F,G ⊆ S), whereby
SeqT ⊆ ℘(S)× S (“consequence”) is defined in standard, Tarskian manner: F SeqT f
:⇔ ∀w ∈ W (F T w ⇒ f T w), but the underlying relation: T ⊆ S ×W (“true at”),
between S 6= ∅ (“Sprache”) and W 6= ∅ (“worlds”) is free.

It follows that general consequences and logical laws coincide: Seq∀ f :⇔ ∀F F Seq f
⇔ ∅ Seq f ⇔: Seq0 f ⇔ Vf :⇔ ∀w f T w.

III. How do I and II go together though? Let =∗ be the set of all interpretations
I(p) ∈ {1, 0}. We extend PL satisfaction |= ⊆ =∗×L conservatively to ||=Φ ⊆ =∗×L2

(Φ ⊆ L), for α = 2β specifically by I ||=Φ α :⇔ ∀J (J |= Φ ⇒ J ||=Φ β), and PL
consequence Φ |= φ to Φ ||= α :⇔ ∀I (I |= Φ⇒ I ||=Φ α).

In analogy to II, I ||=Φ α induces the consequence Γ ||=Φ α. The theorem of II
now yields indeed that ||=Φ is monotonic, but it does not yield that Φ ||= α and
Ψ ⊇ Φ generally imply Ψ ||= α, since Φ ||= α corresponds to Φ ||=Φ α, whereas Ψ ||= α
corresponds to Ψ ||=Ψ α. As indicated in I, concrete refutation is e. g. by Φ := ∅,
α := ¬2p, Ψ := {p}.

Notes. This abstract is widely self-contained. There have been several précis in
“The Bulletin of Symbolic Logic” as well on MPL (with some severe misprints) as
on abstract semantics. In a letter to Wilfried Buchholz from March 2024, we, among
other things, explained that monotonicity, despite of its universal validity, fails for
auto-modal extensions, because satisfaction differs. We are grateful to anybody who
has helped us.
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