
Infinitary proof theory of first order linear logic with
fixed points

Farzaneh Derakhshan
fderakhs@andrew.cmu.edu
ASL annual meeting, 2020

PhD student, Carnegie Mellon University
Advisor: Frank Pfenning

mailto:fderakhs@andrew.cmu.edu

Induction and coinduction

Induction Coinduction - Bisimulation

Induction and coinduction

Termination, Progress;
 A property eventually holds

Productivity, Equality of streams;
A property holds infinitely often

Induction Coinduction - Bisimulation

Induction and coinduction

Finite data types Infinite data types

Natural numbers, Lists, etc. Streams, Infinite trees, etc.

Termination, Progress;
 A property eventually holds

Productivity, Equality of streams;
A property holds infinitely often

Induction Coinduction - Bisimulation

Induction and coinduction

Least fixed points Greatest fixed points

Finite data types Infinite data types

Natural numbers, Lists, etc. Streams, Infinite trees, etc.

Termination, Progress;
 A property eventually holds

Productivity,Equality of streams;
A property holds infinitely often

Induction Coinduction - Bisimulation

Mutual least and greatest fixed points

1. Examples?

2. Induction/Coinduction?

3. Termination/productivity?

Prove theorems using induction and coinduction - Previous works

● Induction principle

● Bisimulation

● Coinduction principle [Kozen and Silva]

● An infinitary calculus for first-order logic with inductive definitions

[Brotherston]

● A finitary calculus for least and greatest fixed points in linear logic [Baelde]

● Well founded recursion with copatterns and sized types [Abel and Pientka]

Our contribution

A first order calculus for proving properties about mutual least
and greatest fixed points, in particular Session-typed processes

1. Add fixed points and assign priorities to them,
2. Use circular edges in the proof for inductive and coinductive steps,
3. Impose a validity condition to ensure soundness of this proof system.

We use priorities in the validity condition to ensure valid simultaneous induction and conduction.

Finite lists: Example of least fixed points

Natural numbers

Lists of natural numbers

Programming with finite lists

Append two lists

I use linear binary session typed processes for programming examples. See [1,2] for more info.

Terminating

If l1 is an empty list
(nil): forward l2 to l.

If l1=cons(x, --):
 send x to l and call Append

on l2 and the remaining of l1.

Termination and List as first order predicates

Append terminates - proof

Programming with streams: example of greatest fixed points

Productive
Merge two streams into a single stream by
alternatively outputting an element of each.

Return the odd elements of a stream.

Return the even elements of a stream.

Programming with streams: example of greatest fixed points

Productive
Merge two streams into a single stream by
alternatively outputting an element of each.

Return the odd elements of a stream.

Return the even elements of a stream.

a1 a2 a3 a4 a5 a6 ...

Programming with streams: example of greatest fixed points

Productive
Merge two streams into a single stream by
alternatively outputting an element of each.

Return the odd elements of a stream.

Return the even elements of a stream.

a1 a2 a3 a4 a5 a6 ...

a1 a3 a5 a2 a4 a6

split1 split2

Programming with streams: example of greatest fixed points

Productive
Merge two streams into a single stream by
alternatively outputting an element of each.

Return the odd elements of a stream.

Return the even elements of a stream.

a1 a2 a3 a4 a5 a6 ...

a1 a3 a5 a2 a4 a6

merge

Programming with streams

Define properties of merge and splits as:

Operations merge and splitⱼ are inverses

run(x,t): A stream producer where x is the list of operations, and t
is the output stream.

Skip one step
and do nothing

Put z as the head of
output stream and inserts
the new list of operations
x to the original one.

Programming with mutual least and greatest fixed points

Run on any list of operations produces a
(possibly infinite) list of elements “o”

Run produces a listₒ - proof

Strong progress and Validity condition

A process satisfies strong progress, if after finite number of
steps, it either becomes empty or attempts to communicate

to the left or right [2].

Theorem. Our validity condition on session-typed processes
ensures strong progress [2].

We want to prove this directly using our calculus.

Producer/Idle: a locally valid program

Producer

x y

x:astream y:nat

Producer/Idle: a locally valid program

Producer

x y

astream
unfolding

x:&{head:ack, tail:astream} y:nat

Producer/Idle: a locally valid program

Producer

x

Request
for head

y

x:ack y:nat

Producer/Idle: a locally valid program

Idle

x y

y:natx:ack

Producer/Idle: a locally valid program

Idle

x y

ack
unfolding

x:+{ack:astream} y:nat

Producer/Idle: a locally valid program

Idle

x y

acknowledgement

x:astream y:nat

Producer/Idle: a locally valid program

Idle

x y

nat
unfolding

y:+{zero:1, succ:nat}x:astream

Producer/Idle: a locally valid program

Idle

x y

succ

y:natx:astream

Producer/Idle: a locally valid program

Producer

x y

Back to the original configuration.

y:natx:astream

Producer/Idle: a locally valid program - code

Eventually communicate with
its external channels

This example is adapted from [2].

Ping-Pong: an invalid program

Ping Pongx y

Ping-Pong: an invalid program

Ping x Pong y

w:astream

Ping
x

Pong y

Ping-Pong: an invalid program

w:&{head:ack, tail:astream}

Ping - i
x

Pong - i y
astream

unfolding

Ping-Pong: an invalid program

w:ack

Ping - ii
x

Pong -ii y
Request
for head

Ping-Pong: an invalid program

w:+{ack:astream}

Ping - iii
x

Pong - iii y
ack

unfolding

Ping-Pong: an invalid program

w:astream

Ping
x

Pong y
acknowledgement

Back to the original configuration.

Ping-Pong: an invalid program - code
Keep calling itself without

communicating with its
external channels

 Bisimulation

Theorem. If configuration C is well-typed then there is an infinite derivation
for its strong progress property. Moreover, if it C is valid, the infinite
derivation is a proof.

A valid configuration of processes satisfies
strong progress

We define strong progress as a predicate

Conclusion

We introduced an infinitary sequent
calculus for first order intuitionistic

multiplicative additive linear logic with
fixed points [2].

Our main motivation for introducing this calculus is
to reason about programs behaviour. In particular
we use this calculus to give a direct proof for the
strong progress property of locally valid binary
session typed processes [2]. The importance of a
direct proof other than its elegance is that it can be
adapted for a more general validity condition on
processes without the need to prove cut elimination
productivity for their underlying derivations.

Send me an Email!

fderakhs@andrew.cmu.edu

References

1. Frank Pfenning. Substructural logics. Lecture notes for course given at Carnegie Mellon University, Fall 2016, December 2016.
2. Farzaneh Derakhshan and Frank Pfenning. 2019. Circular Proofs as Session-Typed Processes: A Local Validity Condition. arXiv

preprint arXiv:1908.01909 (2019).
3. Farzaneh Derakhshan and Frank Pfenning. 2020. Circular Proofs in First-Order Linear Logic with Least and Greatest Fixed Points.

arXiv preprint arXiv:2001.05132 (2020).
4. Andreas Abel and Brigitte Pientka. 2016. Well-founded recursion with copatterns and sized types. Journal of Functional

Programming 26(2016).
5. David Baelde and Dale Miller. 2007. Least and greatest fixed points in linear logic. In International Conference on Logic for

Programming Artificial Intelligence and Reasoning. Springer, 92–106
6. James Brotherston. 2005. Cyclic proofs for first-order logic with inductive definitions. In International Conference on Automated

Reasoning with Analytic Tableaux and Related Methods. Springer, 78–92.
7. Dexter Kozen and Alexandra Silva. 2017. Practical coinduction.Mathematical Structures in Computer Science 27, 7 (2017),

1132–1152.

