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Joint Mathematics Meeting

January 8–9, 2021

Program Committee: Chris Laskowski, Antonio Montalbán (Chair), Anush Tserunyan.

All ASL meeting participants must register for the JMM. Registration is available at
https://jointmathematicsmeetings.org/meetings/national/jmm2021/2247 reg.

The full program with abstracts can be found at http://aslonline.org/meeting/.
All times listed are Mountain Standard Time.

ASL members may be interested in events earlier in the JMM including the AMS-ASL
Special Session Computability Theory and Effective Mathematics organized by Mariya
Soskova, Joe Miller and Jun Le Goh. The two parts of this session will be held on
Thursday January 7, 2021, 8:00am–11:00am and 1:00pm–6:00pm.

FRIDAY, JANUARY 8

Morning

9:00 – 9:50 Invited Lecture: Gabriel Conant (University of Cambridge), Model
theoretic tameness in multiplicative combinatorics.

10:00 – 10:50 Invited Lecture: Barbara Csima (University of Waterloo),
Understanding frameworks for priority arguments in computability
theory.

Afternoon

1:00 – 1:50 Invited Lecture: Christian Rosendal (University of Illinois at
Chicago), Groups with bounded geometry.

2:00 – 2:50 Invited Lecture: Dana Bartosova (University of Florida),
Interactions between dynamics and algebraic operation.

3:00 – 3:50 Contributed Talks: see page 2.
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SATURDAY, JANUARY 9

Morning

9:00 – 9:50 Invited Lecture: Anton Bernshteyn (Georgia Institute of
Technology), Descriptive combinatorics and distributed algorithms.

10:00 – 10:50 Invited Lecture: Charles Steinhorn (Vassar College), Asymptotic
and multidimensional asymptotic classes of finite structures.

Afternoon

1:00 – 1:50 Invited Lecture: Russell Miller (Queens College and CUNY
Graduate Center), Computable structure theory with noncomputable
structures.

CONTRIBUTED TALKS

Contributed Talks

3:00 – 3:20 Katalin Bimbó, (University of Alberta), Entailment and (restricted)
mingle.

3:30 – 3:50 Joachim Mueller-Theys (Independent Scholar), Named model
theory.

Abstracts of invited talks

I DANA BARTOŠOVÁ, Non-metrizable universal minimal flows.
University of Florida.
E-mail: dbartosova@ufl.edu.

For a topological group G, a continuous action of G on a compact Hausdorff space
is called a G-flow. A G-flow is minimal if every orbit is dense. The universal minimal
G-flow has every minimal G-flow as a quotient and it is unique up to an isomorphism of
flows. Universal minimal flows of infinite-dimensional groups have received considerable
attention in the past 15 years due to their connection with finite combinatorics. On the
other hand, locally compact, non-compact groups have non-metrizable universal min-
imal flows, which means the failure of the finitary combinatorial principles. However,
other methods are available for locally compact groups and we encounter interesting
connections with set theory in our investigation of discrete groups and their products.

This is in part a joint work with Aleksandra Kwiatkowska.

I ANTON BERNSHTEYN, Descriptive combinatorics and distributed algorithms.
School of Mathematics, Georgia Institute of Technology, Atlanta, GA.
E-mail: bahtoh@gatech.edu.

Descriptive combinatorics is the study of combinatorial problems (such as graph
coloring) under additional topological or measure-theoretic regularity restrictions. It
turns out that there is a close relationship between descriptive combinatorics and dis-
tributed computing, i.e., the area of computer science concerned with problems that
can be solved efficiently by a decentralized network of processors. In this talk, I will
outline this relationship and present a number of applications.

I GABRIEL CONANT, Model theoretic tameness in multiplicative combinatorics.
University of Cambridge.
E-mail: gconant@maths.cam.ac.uk.



ASSOCIATION FOR SYMBOLIC LOGIC 2021 WINTER MEETING 3

In combinatorics, an “inverse theorem” is a result in which mathematical objects
exhibiting approximate structure are proved to be close to objects that are perfectly
structured. A celebrated example is the structure theorem for approximate subgroups
due to Breuillard, Green, and Tao [1], which built on work of Hrushovski [4].

This talk is about related results in the context of model-theoretic tameness. For
example, Martin-Pizarro, Palaćın, and Wolf [5] showed that under a local stability
assumption, a finite approximate subgroup can be approximated by a bounded number
of cosets of a finite subgroup, up to error ε > 0. Their proof combines local stability
theory with the stable arithmetic regularity lemma for finite groups due to C., Pillay,
and Terry [2], but gives ineffective bounds. I will first discuss a new proof of this
result, which yields polynomial bounds in 1/ε. This also provides the first quantitative
account of stable arithmetic regularity for arbitrary finite groups, and improves the
previous exponential bound in the abelian case (due to Terry and Wolf [6, 7]). I will
then describe joint work with Pillay on analogous qualitative results in the setting
of bounded VC-dimension, which is motivated by previous work on NIP arithmetic
regularity [3].

[1] Emmanuel Breuillard, Ben Green, and Terence Tao, The structure of ap-

proximate groups, Publications Mathématiques. Institut de Hautes Études Sci-
entifiques, vol. 116 (2012), pp. 115–221.

[2] G. Conant, A. Pillay, and C. Terry, A group version of stable regularity,
Mathematical Proceedings of the Cambridge Philosophical Society, vol. 168
(2020), no. 2, pp. 405–413.

[3] , Structure and regularity for subsets of groups with finite VC-dimension,
Journal of the European Mathematical Society, to appear.

[4] Ehud Hrushovski, Stable group theory and approximate subgroups, Journal of
the American Mathematical Society, vol. 25 (2012), no. 1, pp. 189–243.

[5] Amador Martin-Pizarro, Daniel Palaćın, and Julia Wolf, A model-
theoretic note on the Freiman-Ruzsa theorem, arXiv:1912.02883, 2019.

[6] C. Terry and J. Wolf, Stable arithmetic regularity in the finite field model,
Bulletin of the London Mathematical Society, vol. 51 (2019), no. 1, pp. 70–88.

[7] , Quantitative structure of stable sets in finite abelian groups, Transac-
tions of the American Mathematical Society, vol. 373 (2020), no. 6, pp. 3885–3903.

I BARBARA CSIMA, Understanding frameworks for priority arguments in Computabil-
ity Theory.
Department of Pure Mathematics, University of Waterloo, Waterloo, ON, Canada N2L
3G1.
E-mail: csima@uwaterloo.ca.

Priority arguments are a common proof technique used in Computability Theory. A
theorem is broken down to being equivalent to a list of requirements. These require-
ments are given a priority order, and a strategy is devised to meet all the requirements,
making use of the priority order.

Those who know a Computability Theorist know that we love our priority arguments!
In this talk, we will discuss why Computability Theory lends itself so well to this proof
technique, and discuss at a high level the types of strategies used in priority arguments.

As soon as one first learns of priority arguments, one asks, can we save repeating
ourselves, and have a framework for this? In this talk, we will discuss, again at a high
level, existing frameworks for priority arguments, with a particular focus on Ash’s α-
systems and Montalban’s η-systems. We discuss the general idea of how the frameworks
work, their power, and their limitations.
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I RUSSELL MILLER, Computable structure theory with noncomputable structures.
Department of Mathematics, Queens College, 65-30 Kissena Blvd., Queens, NY 11367.
CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA.
E-mail: Russell.Miller@qc.cuny.edu.

From its inception, computable model theory has been based on the notion of a
computable structure: a structure with domain ω (or a computable subset of ω) whose
functions, relations, and constants can all be computed effectively by Turing machines.
This notion, which arose in both the Western and Russian schools, enables a logician to
focus on the complexity of various aspects of these structures—new relations on them,
isomorphisms between them, interpretations of one structure in another—without al-
lowing distractions from complexities that could be baked into the structure, such as an
unorthodox choice of domain or a deliberate obfuscation of a symbol in the signature.

However, there is another means of achieving the same end: one can treat the atomic
diagram of the structure as an oracle, via a Gödel coding that turns it into a subset
of ω. (The structure is still required to have domain ω.) Perhaps this oracle is not
itself computable, but if it is provided this way, one can then ask which aspects of
the structure can be computed by a Turing functional endowed with such an oracle.
On its face, this distinction seems unlikely to yield results much different from those
using traditional computable structures. Surprisingly, though, many properties that
were quite complex under the traditional approach become far more tractable and
recognizable when oracles for noncomputable structures are considered this way. If
anything, the presence of noncomputable structures makes life easier! We will provide
several examples of this phenomenon, due to many researchers, illustrating them so
that they will be accessible even to logicians with no background in this area.

I CHRISTIAN ROSENDAL, Groups with bounded geometry.
Department of Mathematics, Statistics and Computer Science, University of Illinois at
Chicago, 851 S. Morgan St., Chicago, IL 60607.
E-mail: rosendal.math@gmail.com.

Topological and, in particular, Polish groups with bounded geometry form a near
perfect geometric generalisation of the locally compact second countable groups. With
outset in the recently developed framework for geometric group theory for general
topological groups, we shall present a number of results about this specific subclass of
Polish groups with a particular focus on coarse embeddings, equivalences and topolo-
gical couplings.

I CHARLES STEINHORN, Asymptotic and multidimensional asymptotic classes of fi-
nite structures.
Department of Mathematics and Statistics, Vassar College, 124 Raymond Ave., Pough-
keepsie, NY 12604, USA.
E-mail: steinhorn@vassar.edu.

Asymptotic classes of finite structures and measurable structures were introduced by
Macpherson and the speaker in an effort to develop a model theory for classes of finite
structures that reflects contemporary infinite model theoretic themes. This talk surveys
work on that topic, including contributions of several others, and on current research
that generalizes those concepts to what are called multidimensional asymptotic classes
and generalized measurable structures. This most recent work is joint with Macpherson,
S. Anscombe, and D. Wolf.
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Abstracts of contributed talks

I KATALIN BIMBÓ AND J. MICHAEL DUNN, Entailment and (restricted) mingle.
Department of Philosophy, University of Alberta, 2–40 Assiniboia Hall, Edmonton, AB
T6G 2E7, Canada.
E-mail: <bimbo@ualberta.ca>.
URL Address: www.ualberta.ca/~bimbo.
Luddy School of Informatics, Computing and Engineering, and Department of Philos-
ophy, Indiana University, 901 East Tenth Street, Bloomington, IN 47408, USA.
E-mail: <dunn@indiana.edu>.

The logic of entailment (E→) was formulated as a sequent calculus by Kripke [2].
RM , the (full) logic of relevant implication R with (M), the mingle axiom A→ (A→
A) has been thoroughly investigated in the literature. E→ can be (non-equivalently)

extended with (M) or (
−→
M ), the restricted mingle axiom (A→ B)→ ((A→ B)→ (A→

B)). Anderson and Belnap [1, p. 95] posed the question (attributing it to S. McCall)

whether E→ = R→ ∩ E
−→
M→. We use sequent calculus formulations of these logics to

prove that the set of theorems of E→ is indeed the intersection of the set of theorems

of relevant implication and that of E
−→
M→. We also consider a version of the problem

with (M), and we use a counter example to prove that E→ 6= R→ ∩ EM→.

[1] A. R. Anderson and N. D. Belnap, Entailment. The logic of relevance
and necessity, Princeton University Press, Princeton, NJ, 1975.

[2] S. A. Kripke, The problem of entailment (abstract), The Journal of Symbolic
Logic, vol. 24 (1959), p. 324.

I JOACHIM MUELLER-THEYS, Named Model Theory.
Kurpfalzstr. 53, 69 226 Heidelberg, Germany.
E-mail: mueller-theys@gmx.de.

Let L be any first-order language. We call an L-structure M with domain M 6= ∅
(completely) named :iff for all a ∈ M there is a closed L-term t such that a = tM,
where tM is the usual M-interpretation of t.
M vid N :iff M |= t

.
= s implies N |= t

.
= s for all closed t, s. If M is named and

Mvid N , then for all a ∈M there is one and only one β[a] := b ∈ N such that a = tM

and b = tN for some closed t. If N is named as well, β : M → N is surjective. If M
is named and M ≡id N , β is injective. If M, N are named both and M ≡id N , β is
bijective.
Mvat N :iffM |= α implies N |= α for all atomic sentences. IfM is homomorphic

to N , M vat N . Conversely, if M is named and M vat N , then M 'β N . If N is
named as well, β is an epimorphism. Epimorphy maintains namedness. IfM is named
and M ≡at N , β will be a monomorphism. Eventually, if M, N are named both and
M ≡at N , M ∼=β N . In particular, named algebras are isomorphic if they satisfy the
same closed equations.

Consider, e.g., some arithmetical language Lar with the standard model Nar named.
If N is any named Lar-structure having the same atomic theory as Nar, then N ∼= Nar.

Let λ range over atomic and negated-atomic sentences. M vbas N :iff M |= λ
implies N |= λ for all λ. M vbas N implies M ≡at N . ΛM := {λ : M |= λ} is called
the basic theory of M. N |= ΛM implies M vbas N . M |≡ σ :iff M is named and
M |= σ (named satisfaction). Now N |≡ ΛM implies N ∼= M provided that M is
named.

Σ |≡ σ :iff M |≡ Σ implies M |≡ σ for all M (named consequence). M |≡ σ implies
ΛM |≡ σ. If M is named, ΛM |≡ σ iff M |= σ. As a corollary, Λar |≡ σ iff Nar |= σ,
where Λar := ΛNar is the basic arithmetical theory.



6 ASSOCIATION FOR SYMBOLIC LOGIC 2021 WINTER MEETING

A detailed elaboration of these results with proofs is found in the paper “Named
Model Theory”. One of the further topics: reduction to propositional logics, has been
already indicated in the abstract: “The idea of Named Logic” (2020 ASL Annual
Meeting, (Long) Program, pp. 32–33) (to appear in The Bulletin of Symbolic Logic).

Recently, Peter Maier-Borst uttered the idea to generalise the approach. Indeed,
L-structures M that are not completely named can be identified with certain named

L̂-expansions M̂ of them. Thence N ∼=M if N has a named L̂-expansion N̂ such that

N̂ ≡at M̂. Moreover, the basic theory of M̂ axiomatizes the theory of M.
Named semantics may be canonized, as any named structure will be isomorphic to

some term interpretation.
Let L be such that CTL 6= ∅ and the number of relation symbols are finite. We

call named L-structures finitary then. Finitary structures describe a huge class of data
structures. |≡fin σ :iff M|≡ σ for all L-structures M. Unlike finite first-order validity
(Trachtenbrot’s Theorem), finitary validity will even be decidable.


