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Understanding Unstable NIP Theories

Distality was introduced as a concept in first-order model theory by
Pierre Simon in 2013.

It was motivated as an attempt to better understand unstable NIP
theories by studying their stable and “purely unstable,” or distal ,
parts separately. This decomposition is particularly easy to see for
algebraically closed valued fields:

Stable Part: Residue field
Distal Part: Value group
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Distal NIP Theories

Distality quickly became interesting and useful in its own right, and much
progress has been made in recent years studying distal NIP theories. Such
a theory exhibits no stable behavior since it is dominated by its order-like
component.

Examples:
o-minimal theories

p-adics

certain expansions of o-minimal theories
(Hieronymi, Nell 2017)

the asymptotic couple of the field of logarithmic transseries
(Gehret, Kaplan 2018)
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Combinatorial Results

Many classical combinatorial results can be improved when study is
restricted to objects definable in distal NIP structures.

Cutting Lemma (Chernikov, Galvan, Starchenko 2018)

“ We believe that distal structures provide the most general natural
setting for investigating questions in ‘generalized incidence
combinatorics.’ ”

(p, q)-Theorem (Boxall, Kestner 2018)

Szemerédi Regularity Lemma (Chernikov, Starchenko 2018)
I Polynomial bound on partition size
I Homogeneity
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m-Distality
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1-Distality in Pictures...

A Dedekind partition I = I0 + I1 + · · ·+ I4 is 1-distal iff: for all
A = (a0, a1, a2, a3), if each singleton from A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

then all of A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4
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2-Distality in Pictures...

A Dedekind partition I = I0 + I1 + · · ·+ I4 is 2-distal iff: for all
A = (a0, a1, a2, a3), if each pair from A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

then all of A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4
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3-Distality in Pictures...

A Dedekind partition I = I0 + I1 + · · ·+ I4 is 3-distal iff: for all
A = (a0, a1, a2, a3), if each triple from A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

then all of A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4
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m-Distality

Let n > m > 0.

Definition
We say a Dedekind partition I = I0 + · · ·+ In is m-distal iff: for all sets
A = (a0, . . . , an−1) ⊆ U, if A does not insert indiscernibly into I, then
some m-element subset of A does not insert indiscernibly into I.
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m-Distality for EM-types

Let n > m > 0.

Definition
A complete EM-type Γ is (n,m)-distal iff: every Dedekind partition
I0 + · · ·+ In |=EM Γ is m-distal.

Lemma
If Γ is (m + 1,m)-distal, then Γ is (n,m)-distal for all n > m.

Proof: Induction on n. �
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m-Distality for EM-types

Definition
A complete EM-type Γ is m-distal iff: it is (m + 1,m)-distal.

Theorem
Suppose T is NIP. A complete EM-type Γ is m-distal if and only if there is
an m-distal Dedekind partition I0 + · · ·+ Im+1 |=EM Γ.

Roland Walker (UIC) Distality Rank March 27, 2020 11 / 19



← →

Distality Rank for EM-Types

Observation: If a complete EM-type Γ is m-distal, then it is also n-distal
for all n > m.

Definition
The distality rank of a complete EM-type Γ, written DR(Γ), is the least
m ≥ 1 such that Γ is m-distal. If no such finite m exists, we say the
distality rank of Γ is ω.
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Distality Rank for Theories

Let m > 0.

Definition
A theory T , not necessarily complete, is m-distal iff: for all completions of
T and all tuple sizes κ, every Γ ∈ SEM(κ · ω) is m-distal.

In the existing literature, a theory is called distal if and only if it is 1-distal.

Definition
The distality rank of a theory T , written DR(T ), is the least m ≥ 1 such
that T is m-distal. If no such finite m exists, we say the distality rank of
T is ω.
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← →

Finding Examples...

Proposition
Suppose L is a language where all function symbols are unary and all
relation symbols have arity at most m ≥ 2. If T is an L-theory with
quantifier elimination, then DR(T ) ≤ m.

This corollary helps us find examples by putting an upper bound on
distality rank:

We can not apply the proposition to groups...
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This corollary helps us find examples by putting an upper bound on
distality rank:
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a σ(a)
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For example, if T is the complete theory of a strongly minimal group,
then DR(T ) = ω:

Let Ia0 · · · am−1 be an algebraically independent set.

Let am = a0 + · · ·+ am−1, and let A = (a0, . . . , am).

Now we can insert any m elements of A without breaking
indiscernibility...

a0 a1 am−1

am

I

However, inserting all of A breaks indiscernibility...

a0 a1 am−1 am

I
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Base Change

Adding named parameters does not increase distality rank...

Proposition
If T is a complete theory and B ⊆ U is a small set of parameters, then
DR(TB) ≤ DR(T ).

If T is NIP, adding named parameters does not change distality rank...

Base Change Theorem
If T is NIP and B ⊆ U is a small set of parameters, then
DR(TB) = DR(T ).
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← →

Type Determinacy

Let n > m > 0.

Definition
Given p ∈ SA(x0, . . . , xn−1), we say that the n-type p is m-determined iff:
it is completely determined by the m-types{

q ∈ SA(xi0 , . . . , xim−1) : q ⊆ p and i0 < · · · < im−1 < n
}

it contains.

Theorem
If T is m-distal, then for any n global invariant types

p0(x0), . . . , pn−1(xn−1)
which commute pairwise, their product p0 ⊗ · · · ⊗ pn−1 is m-determined.

Furthermore, if T is NIP, the converse holds as well.
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← →

Relationship between m-Distality and m-Dependence

Shelah introduced m-dependence as a property of first-order theories
(and formulae) which generalizes NIP:

1-dependence ⇐⇒ NIP
m-dependence =⇒ (m + 1)-dependence

New result courtesy of Artem Chernikov:

m-distality =⇒ m-dependence

Conjecture:

m-distal regularity improves m-dependent regularity
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Thank You!

A link to the paper and a longer version of the slides can be found at my
website...

https://homepages.math.uic.edu/~roland/
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