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Motivating questions

• What does classification theory say about finite model

theory/descriptive complexity theory, and vice versa?

• What is the interaction of model-theoretic tameness with classical

open problems in FM/DCT?

• To what extent are there robust dividing lines among classes of finite

models, and not just for first-order definability?

• Main motivating question: difference between FO and LFP logic on

classes of finite structures.
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Least fixed-point logic

• Consider first-order L-formulas ϕ(~x ,S) with second-order (relation)

variables S .

• If the length of ~x and the arity of S agree, then ϕ defines a

functional P(An)→ P(An) for any L-structure A

• The stages of an operative positive elementary L-formula ϕ are

defined by

• ϕ0 = ∅
• ϕn+1 = {x : ϕ(x , ϕn)}
• ϕα =

⋃
β<α ϕβ

• If S occurs positively, then this functional is monotone, so has a

least fixed-point, over every L-structure
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Least fixed-point logic

• For an L-structure A, the closure ordinal ‖ϕ‖A is the least Γ such

that A |= ϕΓ = ϕΓ+1.

• LFP formulas are obtained by extending FO logic by the LFP

quantifier,

(lfp~x,S ϕ)(~t) := ϕΓ

for any operative, positive elementary ϕ(~x ,S)

• For x1, x2 ∈ A, we say x1 ≺ x2 in case x1 “appears in” ϕα before x2.

(This is the stage comparison preorder over ϕ)

• Moschovakis: the stage comparison preorder of any LFP formula

ϕ(x ,S) is itself LFP-definable, uniformly over all structures.
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Proficiency

• A family of finite structures C is proficient in case there exists some

ϕ such that ‖ϕ‖A is unbounded in ω as A ranges over C.1

• Observation: if C is not proficient, then FO = LFP over C.

• McColm, 1986: conjecture that if C is proficient, then FO 6= LFP

over C.

• Slogan: non-proficiency is a finite-variable version of countable

categoricity!

• Roughly speaking, C is non-proficient if for each m ≤ n, it realizes at

most finitely many types consisting of of FOn formulas of arity m.

1For any finite structure A, ‖ϕ‖A < ω.
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A brief history

• McColm, 1986: If C is proficient, then FO 6= LFP over C.

• Gurevich, Immerman, Shelah, 1994: Not so. There are proficient

families of structures over which FO = LFP.

• Kolaitis and Vardi, 1992: If C is ordered, then FO 6= LFP over C.

• A resolution either way of the ordered conjecture would resolve a

major open problem in computational complexity!

• Positive resolution: LH � ETIME (Dawar, Hella, 1995)

• Negative resolution: PTIME � PSPACE (Dawar, Lindell,

Weinstein, 1995)
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Our contribution

Theorem (BK, 2017)
McColm’s conjecture holds for tame classes of finite structures C.

• The proof involves investigating LFP analogues of FO dividing lines

like OP, IP,SOP,TP2.

• We also completely classify the implications among the LFP

versions of these properties, namely

LFP− SOP =⇒ LFP− TP2 =⇒ LFP− IP ⇐⇒ LFP−OP

• Note the suprising equivalence between the order and independence

property!
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Elementary limit theories

Definition
The elementary limit theory Th∞(C) of C is the set of sentences which

hold in cofinitely many structures of C.

Lemma (Lindell)
The proficiency of C and whether or not FO = LFP over C are both

properties of Th∞(C).

Corollary
McColm’s conjecture is a property of Th∞(C).
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Elementary limit theories

Lemma
(lfpϕ)(t) is first-order definable over C iff there is a first-order formula

θ(t) such that the following sentences are in Th∞(C):

ϕ(x , θ)↔ θ(x) (1)

ψ(x ,¬θ)↔ ¬θ(x) (2)

where ψ is complementary to φ.

Proof.
(⇐= ) (1) says that θ is a fixed point of S 7→ ϕ(x ,S), hence

(lfpϕ)(t)→ θ(t). Similarly, (2) says that (lfpψ)(t)→ θ(t).

Since they are complementary, (lfpϕ)(t)↔ θ(t).
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Tame classes of theories

Let ϕ(x ; y) be any formula (FO or LFP), n ∈ N, and M be a structure.

• ϕ has an n-instance of the order property (OP(n)) in M if there

exist tuples a1, . . . , an ∈ M |x| and b1, . . . , bn ∈ M |y | such that

M |= ϕ(ai ; bj) if and only if i ≤ j .

• ϕ has an n-instance of the independence property (IP(n)) in M if

there exist tuples ai ∈ M |x| for all i ∈ {1, . . . , n} and bX ∈ M |y | for

all X ⊆ {1, . . . , n} such that M |= ϕ(ai ; bX ) if and only if i ∈ X .

• ϕ has an n-instance of the strict order property (SOP(n)) in M if

there exist tuples b1, . . . , bn ∈ M |y | such that ϕ(M; bi ) ⊆ ϕ(M; bj) if

and only if i ≤ j .
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Tame classes of theories

Let ϕ(x ; y) be any formula (FO or LFP), n ∈ N, and M be a structure.

• ϕ(x ; y) has an n-instance of the tree property of the second kind

(TP2(n)) in M if there are tuples bi,j ∈ M |y | for 1 ≤ i , j ≤ n such

that for any i and any j 6= k , ϕ(M; bi,j) ∩ ϕ(M; bi,k) = ∅, but for

any function f : {1, . . . , n} → {1, . . . , n},

n⋂
i=1

ϕ(M; bi,f (i)) 6= ∅.
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Tame classes of theories

• A family C of finite structures has property (FO- or LFP-) P, for

any P ∈ {OP, IP,SOP,TP2}, in case there is a (FO- or LFP-)

formula ϕ with arbitrarily large instances of P(n) in M, as M varies

over structures in C.

• Therefore, C does not have P, in case the n-instances of P, for any

formula ϕ, are uniformly bounded as we vary over all M ∈ C.

• C having FO-P is equivalent to Th∞(C) having P.

• We study these four, because:

• Most commonly studied combinatorial dividing lines imply either

NSOP or NTP2, and

• IP and OP are otherwise the “most important.”
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LFP-SOP and proficiency

• Suppose a family of structures is proficient. Then the stage

comparison relation witnesses LFP-SOP.

• Conversely, if ϕ(~x , ~y) witnesses LFP-SOP, then

ψ(~y1, ~y2) ≡ (∀~x)(ϕ(~x , ~y1)→ ϕ(~x , ~y2)) defines a partial order with

arbitrarily long chains.

• Given a partial order with arbitrarily long chains, we can define a

linear order with arbitrarily long chains (roughly, by comparing

rank)

• Given a linear order with arbitrarily long chains, we can define a

proficient formula.

12



LFP-SOP implies all other properties

• LFP-SOP =⇒ LFP-OP, under general considerations.

• Consider the family N of finite initial segments of (N, <).

• Over N , the BIT and FACTOR predicates are LFP-definable

• BIT(x , y) ⇐⇒ the x-th bit of y base 2 is 1.

• FACTOR(x , y , z) ⇐⇒ y z is the largest power of y dividing x .

• BIT has IP, FACTOR has TP2

• Let bi,j = (pi , j), where (pi )i∈ω is an enumeration of the primes: for

any function f : n→ n, let af =
∏n

i<n p
f (i)
i . Then,

• FACTOR(N; pi , j) and FACTOR(N; pi , k) are disjoint, but

• af ∈
⋂

i<n FACTOR(N; pi , f (i))

• Hence, LFP− SOP =⇒ LFP− IP and LFP− TP2 over any C.
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First-order characterizations of LFP-P

Lemma
For any P ∈ {OP, IP,SOP,TP2}, C has LFP-P iff C is proficient or C
has FO-P.

Corollary
Whether or not C has LFP-P is a property of Th∞(C).

Corollary
For any property P, McColm’s conjecture holds for any C that fails any

FO-P.

Proof.
If C is proficient, then it satisfies LFP-P, but fails FO-P.
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Implications among LFP-P

• We know LFP-SOP =⇒ LFP-TP2 =⇒ LFP-IP =⇒ LFP-OP.

What about conversely?

• There are countably categorical theories with the finite model

property that have:

• IP but NTP2 (e.g., theory of the random graph)

• TP2 but NSOP (e.g., generic theory of parameterized equivalence

relations)

which show the first two implications are strict.

• If C has LFP-OP, but is not proficient, then FO = LFP, so by

OP ⇐⇒ IP ∨ SOP (Shelah), it must have IP.

• Hence, LFP-OP =⇒ LFP-IP!
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Future work

• Investigate combinatorial dividing lines for other fixed-point logics

(e.g., transitive closure logic).

• Can we obtain some sort of asymptotic structure theory for tame,

non-proficient classes of structures?

• To what extent can FMT assumptions of bounded cliquewidth and

bounded treewidth be assimilated into model-theoretic tameness

considerations?

• Chen and Flum, 2012: The ordered conjecture is true for families

of finite structures of bounded cliquewidth and treewidth.

• Open question: Does the ordered conjecture hold for any tame

family of finite structures?
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