Tameness in least fixed-point logic and McColm's conjecture

Siddharth Bhaskar ¹ Alex Kruckman ²

¹Datalogisk Institut, Københavns Universitet

²Department of Mathematics and Computer Science, Wesleyan University

- What does classification theory say about finite model theory/descriptive complexity theory, and vice versa?
- What is the interaction of model-theoretic tameness with classical open problems in FM/DCT?
- To what extent are there robust dividing lines among classes of finite models, and not just for first-order definability?
- Main motivating question: difference between FO and LFP logic on classes of finite structures.

- Consider first-order *L*-formulas $\varphi(\vec{x}, S)$ with second-order (relation) variables *S*.
- If the length of \vec{x} and the arity of S agree, then φ defines a functional $\mathcal{P}(A^n) \to \mathcal{P}(A^n)$ for any *L*-structure A
- The stages of an operative positive elementary L-formula φ are defined by
 - $\varphi^0 = \emptyset$
 - $\varphi^{n+1} = \{x : \varphi(x, \varphi^n)\}$
 - $\varphi^{\alpha} = \bigcup_{\beta < \alpha} \varphi^{\beta}$
- If *S* occurs *positively*, then this functional is monotone, so has a least fixed-point, over every *L*-structure

Least fixed-point logic

- For an L-structure A, the closure ordinal ||φ||_A is the least Γ such that A ⊨ φ^Γ = φ^{Γ+1}.
- LFP formulas are obtained by extending FO logic by the *LFP* quantifier,

$$(\mathbf{lfp}_{\vec{x},S}\,\varphi)(\vec{t}) := \varphi^{\Gamma}$$

for any operative, positive elementary $\varphi(\vec{x},S)$

- For x₁, x₂ ∈ A, we say x₁ ≺ x₂ in case x₁ "appears in" φ^α before x₂. (This is the stage comparison preorder over φ)
- Moschovakis: the stage comparison preorder of any LFP formula $\varphi(x, S)$ is itself LFP-definable, uniformly over all structures.

- A family of finite structures C is proficient in case there exists some φ such that $\|\varphi\|_A$ is unbounded in ω as A ranges over C.¹
- Observation: if C is not proficient, then FO = LFP over C.
- McColm, 1986: conjecture that if C is proficient, then FO ≠ LFP over C.
- Slogan: non-proficiency is a finite-variable version of *countable categoricity*!
- Roughly speaking, C is non-proficient if for each m ≤ n, it realizes at most finitely many types consisting of of FOⁿ formulas of arity m.

¹For any finite structure A, $\|\varphi\|_A < \omega$.

- McColm, 1986: If C is proficient, then $FO \neq LFP$ over C.
- Gurevich, Immerman, Shelah, 1994: Not so. There are proficient families of structures over which FO = LFP.
- Kolaitis and Vardi, 1992: If C is ordered, then $FO \neq LFP$ over C.
- A resolution either way of the ordered conjecture would resolve a major open problem in computational complexity!
 - Positive resolution: LH \leq ETIME (Dawar, Hella, 1995)
 - Negative resolution: $PTIME \leq PSPACE$ (Dawar, Lindell, Weinstein, 1995)

Theorem (BK, 2017)

McColm's conjecture holds for tame classes of finite structures C.

- The proof involves investigating LFP analogues of FO dividing lines like OP, IP, SOP, TP2.
- We also completely classify the implications among the LFP versions of these properties, namely

 $\mathrm{LFP}-\mathrm{SOP}\implies \mathrm{LFP}-\mathrm{TP2}\implies \mathrm{LFP}-\mathrm{IP}\iff \mathrm{LFP}-\mathrm{OP}$

• Note the suprising equivalence between the order and independence property!

Definition

The elementary limit theory $\operatorname{Th}^{\infty}(\mathcal{C})$ of \mathcal{C} is the set of sentences which hold in cofinitely many structures of \mathcal{C} .

Lemma (Lindell)

The proficiency of C and whether or not FO = LFP over C are both properties of $Th^{\infty}(C)$.

Corollary

McColm's conjecture is a property of $Th^{\infty}(\mathcal{C})$.

Lemma

 $(\mathbf{lfp} \varphi)(t)$ is first-order definable over C iff there is a first-order formula $\theta(t)$ such that the following sentences are in $\mathrm{Th}^{\infty}(C)$:

 $\varphi(x,\theta) \leftrightarrow \theta(x)$ (1)

$$\psi(x, \neg \theta) \leftrightarrow \neg \theta(x)$$
 (2)

where ψ is complementary to ϕ .

Proof.

 (\Leftarrow) (1) says that θ is a fixed point of $S \mapsto \varphi(x, S)$, hence $(\mathbf{lfp} \ \varphi)(t) \to \theta(t)$. Similarly, (2) says that $(\mathbf{lfp} \ \psi)(t) \to \theta(t)$.

Since they are complementary, $(\mathbf{lfp} \, \varphi)(t) \leftrightarrow \theta(t)$.

Let $\varphi(x; y)$ be any formula (FO or LFP), $n \in \mathbb{N}$, and M be a structure.

- φ has an *n*-instance of the order property (OP(n)) in M if there exist tuples a₁,..., a_n ∈ M^{|x|} and b₁,..., b_n ∈ M^{|y|} such that M ⊨ φ(a_i; b_j) if and only if i ≤ j.
- φ has an *n*-instance of the independence property (IP(n)) in M if there exist tuples a_i ∈ M^{|x|} for all i ∈ {1,..., n} and b_X ∈ M^{|y|} for all X ⊆ {1,..., n} such that M ⊨ φ(a_i; b_X) if and only if i ∈ X.
- φ has an *n*-instance of the strict order property (SOP(n)) in M if there exist tuples b₁,..., b_n ∈ M^{|y|} such that φ(M; b_i) ⊆ φ(M; b_j) if and only if i ≤ j.

Let $\varphi(x; y)$ be any formula (FO or LFP), $n \in \mathbb{N}$, and M be a structure.

• $\varphi(x; y)$ has an *n*-instance of the tree property of the second kind $(TP_2(n))$ in M if there are tuples $b_{i,j} \in M^{|y|}$ for $1 \le i, j \le n$ such that for any i and any $j \ne k$, $\varphi(M; b_{i,j}) \cap \varphi(M; b_{i,k}) = \emptyset$, but for any function $f: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$,

$$\bigcap_{i=1}^n \varphi(M; b_{i,f(i)}) \neq \emptyset$$

- A family C of finite structures has property (FO- or LFP-) P, for any P ∈ {OP, IP, SOP, TP2}, in case there is a (FO- or LFP-) formula φ with arbitrarily large instances of P(n) in M, as M varies over structures in C.
- Therefore, C does not have P, in case the n-instances of P, for any formula φ, are uniformly bounded as we vary over all M ∈ C.
- \mathcal{C} having FO-P is equivalent to $\operatorname{Th}^{\infty}(\mathcal{C})$ having P.
- We study these four, because:
 - Most commonly studied combinatorial dividing lines imply either NSOP or NTP2, and
 - IP and OP are otherwise the "most important."

- Suppose a family of structures is proficient. Then the **stage comparison relation** witnesses LFP-SOP.
- Conversely, if $\varphi(\vec{x}, \vec{y})$ witnesses LFP-SOP, then $\psi(\vec{y_1}, \vec{y_2}) \equiv (\forall \vec{x})(\varphi(\vec{x}, \vec{y_1}) \rightarrow \varphi(\vec{x}, \vec{y_2}))$ defines a partial order with arbitrarily long chains.
- Given a partial order with arbitrarily long chains, we can define a linear order with arbitrarily long chains (roughly, by comparing rank)
- Given a linear order with arbitrarily long chains, we can define a proficient formula.

- LFP-SOP \implies LFP-OP, under general considerations.
- Consider the family \mathcal{N} of finite initial segments of $(\mathbb{N}, <)$.
- $\bullet\,$ Over $\mathcal N,$ the BIT and FACTOR predicates are LFP-definable
 - $BIT(x, y) \iff$ the x-th bit of y base 2 is 1.
 - FACTOR $(x, y, z) \iff y^z$ is the largest power of y dividing x.
- BIT has IP, FACTOR has TP2
- Let b_{i,j} = (p_i, j), where (p_i)_{i∈ω} is an enumeration of the primes: for any function f: n → n, let a_f = ∏ⁿ_{i≤n} p^{f(i)}_i. Then,
 - FACTOR(\mathbb{N} ; p_i , j) and FACTOR(\mathbb{N} ; p_i , k) are disjoint, but
 - $a_f \in \bigcap_{i < n} FACTOR(\mathbb{N}; p_i, f(i))$
- Hence, $LFP SOP \implies LFP IP$ and LFP TP2 over any C.

Lemma

For any $P \in \{OP, IP, SOP, TP2\}$, C has LFP-P iff C is proficient or C has FO-P.

Corollary

Whether or not C has LFP-P is a property of $Th^{\infty}(C)$.

Corollary

For any property P, McColm's conjecture holds for any C that fails any FO-P.

Proof.

If C is proficient, then it satisfies LFP-P, but fails FO-P.

Implications among LFP-P

- We know LFP-SOP \implies LFP-TP2 \implies LFP-IP \implies LFP-OP. What about conversely?
- There are countably categorical theories with the finite model property that have:
 - IP but NTP2 (e.g., theory of the random graph)
 - TP2 but NSOP (e.g., generic theory of parameterized equivalence relations)

which show the first two implications are strict.

- If C has LFP-OP, but is not proficient, then FO = LFP, so by OP \iff IP \lor SOP (Shelah), it must have IP.
- Hence, LFP-OP \implies LFP-IP!

- Investigate combinatorial dividing lines for other fixed-point logics (e.g., transitive closure logic).
- Can we obtain some sort of asymptotic structure theory for tame, non-proficient classes of structures?
- To what extent can **FMT** assumptions of bounded cliquewidth and bounded treewidth be assimilated into model-theoretic tameness considerations?
- Chen and Flum, 2012: The ordered conjecture is true for families of finite structures of bounded cliquewidth and treewidth.
- **Open question:** Does the ordered conjecture hold for any tame family of finite structures?

- Thanks to Cameron Hill, Greg McColm, Steve Lindell, and Scott Weinstein for their help and encouragement.
- Thanks to Larry Moss and the logic group at Indiana University for their support.
- Thanks for listening! If you want to talk more about this, please contact us by email.