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Consider the following ‘derivation’ over N*:

—_— @
b* =25 =
¢ < a4 =20* =

= 2isprime Jx < a.a =2x,a" = 2b* =

a* =2 =
= Vx,y. x> # 2*

- Apparently non-wellfounded reasoning.

- Why is it sound?
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Cyclic proofs

« Proof theory for FOL with inductive defintions.

- (Automated) proofs of program termination in separation logic.

« Proof systems for the modal yi-calculus and other fixed point logics.

- Type systems based on fragments of linear logic with fixed points.
+ Metalogical results, like interpolation.

« Proof search procedures.

A motivating abstract question:

Question (Brotherston-Simpson conjecture)
Are inductive proofs and cyclic proofs equally powerful?

This talk is about the special case of first-order arithmetic.
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A sequent calculus presentation of PA

Peano Arithmetic, written PA, can be specified by a deduction system as follows:
- A,-initial sequents for the instances of Q: defining properties of 0,'s, +, X, <.
- An induction rule:
I'= A,A(0) T,A(a) = A,A(sa)
I = A A(t)

- We include an explicit substitution rule for unifying sequents in cycles:

I's A
0-sup —M8M
o(T) = 6(A)
Definition

I® is the fragment of PA where induction is restricted to formulae A € ®. In
particular I¥, has induction only on formulae 3x;.Vx,. . . . . Qx,.A, with A recursive.
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Some proof theory of arithmetic

Proposition (Folklore)
Forn > O we have that I, = III,,.

Theorem ((Free-)cut elimination)
IfPA = S(d), then there is a sequent proof T of S(&) containing only subformulae of S(d), an

induction formula of 7w or an initial sequent of .
Corollary

Forn > 0,ifIX, F VX.0o(X), for p € X, then = ©(d@) has a sequent proof containing only
33, formulae.
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Non-wellfounded arithmetic (Simpson ’12)

Definition (Precursors and traces)
A preproof is a locally correct infinite derivation tree. Let (S;); be an infinite branch
of a preproof. We say t’ is a precursor of t at i if:

- S; concludes a f-sub stepand t = 6(t'); or
- S; concludes any other step and t’ is t; or

- S; concludes any other step and t = t’ occurs in the antecedent of S;.

Atrace along an infinite branch (S;); is a sequence (t;);>, such that:
@ tisaa precursor of t;; or

@ fi11 < toccurs in the antecedent of S;. (a ‘progress point’)

Definition (co-proofs)
A oo-proof (or just ‘proof’) is a preproof where each infinite branch has an infinitely
progressing trace.
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Irrationality of \/2 again

@
b =2 =
c < a4 =20* =

= 2isprime 3x < a.a = 2x,a* = 2b* =
P )

at =2b =
= Vx,y. x> # 27

There is an infinitely progressing trace (a, ¢, b)*.
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Soundness of co-proofs

Theorem (folklore)
IfA has a co-proof, then N E A.

Proofidea.

« Suppose otherwise, and build a branch of invalid sequents (S;);.
- Simultaneously build assignments p; witnessing the invalidity.
+ By definition, there is an infinitely progressing trace (t);>» along (S:);.

- Can induce an infinite descending sequence p; (t,) > pi, (t,) > - O
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A finitary fragment: the cyclic proofs

Definition
A cyclic (or regular) proof'is a co-proof with only finitely many distinct subtrees.
CA is the theory of sentences that have cyclic proofs.

Proposition (folklore)
We can effectively check if a finite labelled graph is a correct cyclic proof.

Proof.
Let 7 be a regular preproof. Define:

+ A} a(deterministic) Biichi automaton recognising infinite branches of 7.

- AT a NBA recognising branches of 7 with an infinitely progressing trace.
Now simply check if L(A]) C L(AT). O

NB: inclusion of Biichi automata is PSPACE-complete.
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Previous work

Theorem (Simpson '11)
CA = PA.
- Formalises soundness argument for co-proofs in an appropriate fragment of
SO arithmetic (ACAy).
+ (Basic automaton theory for w-languages, can be carried out in ACA,.)
« The result for PA is obtained by conservativity of ACA, over PA.

« Possibly non-elementary blowup in proof size, due to non-uniformity.

Theorem (Implicit in Berardi & Tatsuta '17)
CA + Z = PA + T for any set of Martin-Lif ordinary inductive definitions Z and their
associated rules.

- ‘Structural’ argument, relying on proof-level manipulations.

- Relies on some nontrivial infinitary combinatorics specialised to arithmetic.

- High logical complexity.
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Some questions

Definition
Write CX,, for the theory axiomatised by the universal closures of CA proofs
containing only X, -formulae.

NB: A CY, proof of a 32, sequent will contain only ¥, formulae anyway, by free-cut
elimination.

Question (Simpson ’17)

@ How does the logical complexity of CA and PA compare?
Does CX.,,, = IX,, for appropriately chosen m, n?
® How does the proof complexity of PA and CA compare?
© Does cut-admissibility hold for any non-trivial fragment of CA?

13/29
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It is tempting to think that I3, = CX,. However this is not the case:
Example (Simpson ’17)

Recall the Ackermann-Péter function:

y+1 x=0
Alx,y) = S A(x—1,1,2) x>0,y=0
A(x_ lvA(xa.y - 1)) xy >0

Let A(x, y, z) be an appropriate ¥, formula computing its graph.
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Digression: calibrating intuitions

It is tempting to think that I3, = CX,. However this is not the case:
Example (Simpson ’17)

Recall the Ackermann-Péter function:

y+1 x=0
A(x,y) = SA(x—1,1,2) x>0,y=0
A(x_ lvA(xa.y - 1)) xy >0

Let A(x, y, z) be an appropriate ¥, formula computing its graph. We have:

® Jz.A(z,y—1,2) Q 2. A(z—1,9,2)

“ F2. A(z—1,1,2) = 32,y A(z,y-1,9 ) AA(z—1,y,2)

z>0,y=0= 3z. A(z,y,2) z,y>0 = 3z. A(z,y,2)

=0 = A(z,y,y+1) x>0= 3z.A(z,y,2)

= Jz.A(z,y,2)
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Duality for free

On the other hand, some intuitions have simple proofs:

Proposition
Forn > 0,CX%, = CII,.

Proof.
Simply replace every sequent 5, I" = A with p, T = A, where p exhausts all atomic
formulae in the antecedent. O
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Summary of contribution

Theorem
CY, = IX,,, over I, theorems.

D: by structural methods manipulating normal forms of inductive proofs.

C: soundness argument can be formalised in conservative SO extensions.

Theorem
PA and CA proof size differs only elementarily.

Proofidea.
Soundness argument can be made uniform in PA. Relies on:

- Deterministic acceptance of branch automaton is arithmetical.
- Well-foundedness of only finite ordinals is needed for the argument.

« ~~ arithmetical approximation of non-deterministic acceptance.
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Main lemma

Lemma
Let 7 be a IT1,, ., proof, containing only 11, ., formulae, of

F,Vxl.AI,...,sz.Al = A,Vyl.BI,...,Vym.Bm 08}
where T, A, A;, B; are X3, and X, occur only in A, B respectively.

Then there is a CY.,, derivation [ 7| of the form:

{F = A, Ai}igl

I'=A,Bi,...,Bn

Moreover, no free variables of (1) occur as eigenvariables in [7].

18/29



Translation of an induction step to a cyclic proof, idea

If 7 extends proofs 7o, 7’ by an induction step,

; I,ViA = A,V5.B,Vz.C(0) T,VxXA,Vz.C(c) = A,V}.B,Vz.C(sc)
I, VXA = A,Vj.B,Vx.C(t)

in

we define [7] to be the following cyclic proof:

T = A A, I'= A, B,C(c) {I'= A A}

I = A, B, A(0) c<d,T = A,B,C(sc)

Tb=0,= A, B C) d=se,T = A, B,C(d)
I'= A, B,C(d)
"I= A, B,C(t)

su
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Reverse mathematics of w-word automata

Reason about infinite words/sets in conservative SO extensions of FO arithmetic.

RCA, ~ I¥; ~ primitive recursive arithmetic

For an appropriate formalisation of NBA complementation, we have:

Theorem (Kolodziejczyk, Michalewski, Pradic & Skrzypczak '16)
RCA,; + X,-IND - VNBAA.VX. (X € LIA) =X ¢ L(A)) @)

Moreover, for each NBA A, we have:

RCA - VX. (X € L(A) =X ¢ L(A)) 3

NB: (3) is implicit in that work. It is not trivial!
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From cycles to induction

Write ArAcc(X, A,) for:

“eventually, there are runs of X on A4, hitting final states arbitrarily often”

Theorem
1Y, (X) + “A; has a complement” proves:

VDBA.AL(“ 1 € A,PNX € E(.Al)) D AI‘ACC(X7 Az)

« X € L(A) is arithmetical due to determinism.
- (Emptiness, unions and intersections of NBA formalisable in RCA,.)
The soundness argument of CX, constructs a A, ;-definable invalid branch, so:

Corollary

@ PA elementarily simulates CA.
® I3, OC%,
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Provably recursive functions of CA,

« Forn > 1, the provably recursive functions of C3, are just those of IX,, ;.

- However CA, is IT;-axiomatised, so by Parikh’s theorem we have:

Corollary
The provably recursive functions of CA ave just those of IA, i.e. the linear-time hierarchy.

Failure of cut-admissibility

Corollary
Forn > 1, the class of CA proofs with only 3, cuts is not complete for CX,,.

Proof.
« I¥, 41 F Conis, s0 CX, = Conys, by 11,4 ;-conservativity.
« On the other hand, CX,_; ¥ Con;yx, since otherwise IX,, - Conrs, . O
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Metalogical aspects of CA

Reflection and consistency

Rephrasing our results in terms of logical strength, we have:

Corollary
Forn > 0,15, , F IL,4,-Rfncs, . In particular we have IX, |, = Concs,.

Incompleteness
Unsurprisingly, we have Gédel incompleteness for all fragments CX,,.

In particular, we have:
Corollary
Forn > 0,134, ¥ Concs,.

Proof.
Otherwise CX, - Concs, by I1,;-conservativity. O
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Reverse mathematics of McNaughton’s theorem

In fact, there is a curious consequence for w-automaton theory.

Theorem
A natural formulation of McNaughton’s theorem, that every NBA has an equivalent
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- (Given McNaughton, we may check universality already in RCAo).

- This allows us to formalise, say, the soundness of CA, already in I3,
contradicting Godel’s second incompletess result for CA,. O

This was not known before!
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What about cyclic versions of Godel’s System T?
~- recent progress with the Lyonese school.

Interestingly, Ackermann-Péter has a ‘type-0’ cyclic proof:

: (1) 1(2) 1(3)
e i TR e T T = ! Tr=r) Trort ‘T oT
—r ! L1 —1* ot =1 ot 11— 1
! 1 s I o1 I ST

T ! L1150 — 1
o 1 — 1t
1 — 1
Question

Does ‘cyclic-T" exhibit a 1-level improvement over T?

Work-in-progress: a Dialectica-style functional interpretation of CA.
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Summary and open questions

Optimal logical complexity result. In fact:
Corollary

CX, is precisley the IT, | consequences of IZ, ;.
Proof complexity differs only elementarily. In fact:

Corollary

PA exponentially simulates CA. This is optimal, unless there is a more efficient way to check
cyclic proof soundness.

Question
What is the logical strength of McNaughton’s theorem, in general?

Thank you.
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