On the logical complexity of cyclic arithmetic

Anupam Das¹

University of Birmingham

Moscow Proof Theory Seminar 23rd March 2020 (via video-conference)

¹Partially supported by a Marie Skłodowska-Curie fellowship, ERC project 753431.

Consider the following 'derivation' over $\mathbb{N}^+ {:}$

$$\frac{\vdots}{b^2 = 2c^2 \Rightarrow} \bullet \\
\frac{c < a, 4c^2 = 2b^2 \Rightarrow}{\exists x < a.a = 2x, a^2 = 2b^2 \Rightarrow} \\
\frac{a^2 = 2b^2 \Rightarrow}{\Rightarrow \forall x, y. x^2 \neq 2y^2} \bullet \\$$

Consider the following 'derivation' over \mathbb{N}^+ :

$$\frac{\vdots}{b^2 = 2c^2 \Rightarrow} \bullet \\
\frac{c < a, 4c^2 = 2b^2 \Rightarrow}{\exists x < a.a = 2x, a^2 = 2b^2 \Rightarrow} \bullet \\
\frac{a^2 = 2b^2 \Rightarrow}{\Rightarrow \forall x, y. x^2 \neq 2y^2} \bullet \\$$

.

• Apparently non-wellfounded reasoning.

Consider the following 'derivation' over \mathbb{N}^+ :

$$\frac{\vdots}{b^2 = 2c^2 \Rightarrow} \bullet \\
\frac{c < a, 4c^2 = 2b^2 \Rightarrow}{\exists x < a.a = 2x, a^2 = 2b^2 \Rightarrow} \bullet \\
\frac{a^2 = 2b^2 \Rightarrow}{\Rightarrow \forall x, y. x^2 \neq 2y^2} \bullet \\$$

.

- Apparently non-wellfounded reasoning.
- Why is it sound?

Outline

1 Peano and Cyclic Arithmetic

2 Summary of previous work and contributions

3 From induction to cycles

4 From cycles to induction

5 Some further results

6 Conclusions

- Proof theory for FOL with inductive defintions.
- (Automated) proofs of program termination in separation logic.
- Proof systems for the modal μ -calculus and other fixed point logics.
- Type systems based on fragments of linear logic with fixed points.
- Metalogical results, like interpolation.
- Proof search procedures.

• ...

- Proof theory for FOL with inductive defintions.
- (Automated) proofs of program termination in separation logic.
- Proof systems for the modal μ -calculus and other fixed point logics.
- Type systems based on fragments of linear logic with fixed points.
- Metalogical results, like interpolation.
- Proof search procedures.

• ...

A motivating abstract question:

Question (Brotherston-Simpson conjecture) Are inductive proofs and cyclic proofs equally powerful?

- Proof theory for FOL with inductive defintions.
- (Automated) proofs of program termination in separation logic.
- Proof systems for the modal $\mu\text{-}calculus$ and other fixed point logics.
- Type systems based on fragments of linear logic with fixed points.
- Metalogical results, like interpolation.
- Proof search procedures.

• ...

A motivating abstract question:

Question (Brotherston-Simpson conjecture)

Are inductive proofs and cyclic proofs equally powerful?

This talk is about the special case of **first-order arithmetic**.

Peano Arithmetic, written PA, can be specified by a deduction system as follows:

- Δ_0 -initial sequents for the instances of Q: defining properties of 0, s, +, ×, <.
- An induction rule:

$$\frac{\Gamma \Rightarrow \Delta, A(0) \quad \Gamma, A(a) \Rightarrow \Delta, A(sa)}{\Gamma \Rightarrow \Delta, A(t)}$$

Peano Arithmetic, written PA, can be specified by a deduction system as follows:

- Δ_0 -initial sequents for the instances of Q: defining properties of 0, s, +, ×, <.
- An induction rule:

$$\frac{\Gamma \Rightarrow \Delta, A(0) \quad \Gamma, A(a) \Rightarrow \Delta, A(sa)}{\Gamma \Rightarrow \Delta, A(t)}$$

• We include an explicit substitution rule for unifying sequents in cycles:

$${}_{\theta\text{-sub}} \frac{\Gamma \Rightarrow \Delta}{\theta(\Gamma) \Rightarrow \theta(\Delta)}$$

Peano Arithmetic, written PA, can be specified by a deduction system as follows:

- Δ_0 -initial sequents for the instances of Q: defining properties of 0, s, +, ×, <.
- An induction rule:

$$\frac{\Gamma \Rightarrow \Delta, A(0) \quad \Gamma, A(a) \Rightarrow \Delta, A(sa)}{\Gamma \Rightarrow \Delta, A(t)}$$

• We include an explicit substitution rule for unifying sequents in cycles:

$$\stackrel{\theta \to ub}{\xrightarrow{\theta \to ub}} \frac{\Gamma \Rightarrow \Delta}{\theta(\Gamma) \Rightarrow \theta(\Delta)}$$

Definition

I Φ is the fragment of PA where induction is restricted to formulae $A \in \Phi$. In particular $I\Sigma_n$ has induction only on formulae $\exists x_1.\forall x_2....Qx_n.A$, with A recursive.

Proposition (Folklore)

For $n \geq 0$ we have that $I\Sigma_n = I\Pi_n$.

Proposition (Folklore)

For $n \geq 0$ we have that $I\Sigma_n = I\Pi_n$.

Theorem ((Free-)cut elimination)

If $\mathsf{PA} \vdash S(\vec{a})$, then there is a sequent proof π of $S(\vec{a})$ containing only subformulae of $S(\vec{a})$, an induction formula of π or an initial sequent of π .

Proposition (Folklore)

For $n \geq 0$ we have that $I\Sigma_n = I\Pi_n$.

Theorem ((Free-)cut elimination)

If $\mathsf{PA} \vdash S(\vec{a})$, then there is a sequent proof π of $S(\vec{a})$ containing only subformulae of $S(\vec{a})$, an induction formula of π or an initial sequent of π .

Corollary

For $n \ge 0$, if $I\Sigma_n \vdash \forall \vec{x}.\varphi(\vec{x})$, for $\varphi \in \Sigma_n$, then $\Rightarrow \varphi(\vec{a})$ has a sequent proof containing only Σ_n formulae.

Definition (Precursors and traces)

A **preproof** is a locally correct infinite derivation tree.

Definition (Precursors and traces)

A **preproof** is a locally correct infinite derivation tree. Let $(S_i)_i$ be an infinite branch of a preproof. We say t' is a precursor of t at i if:

- S_i concludes a θ -sub step and $t = \theta(t')$; or
- S_i concludes any other step and t' is t; or
- S_i concludes any other step and t = t' occurs in the antecedent of S_i .

Definition (Precursors and traces)

A **preproof** is a locally correct infinite derivation tree. Let $(S_i)_i$ be an infinite branch of a preproof. We say t' is a precursor of t at i if:

- S_i concludes a θ -sub step and $t = \theta(t')$; or
- S_i concludes any other step and t' is t; or
- S_i concludes any other step and t = t' occurs in the antecedent of S_i .

A **trace** along an infinite branch $(S_i)_i$ is a sequence $(t_i)_{i \ge n}$ such that:

- **1** t_i is a a precursor of t_{i+1} ; or
- **2** $t_{i+1} < t_i$ occurs in the antecedent of S_i . (a 'progress point')

Definition (Precursors and traces)

A **preproof** is a locally correct infinite derivation tree. Let $(S_i)_i$ be an infinite branch of a preproof. We say t' is a precursor of t at i if:

- S_i concludes a θ -sub step and $t = \theta(t')$; or
- S_i concludes any other step and t' is t; or
- S_i concludes any other step and t = t' occurs in the antecedent of S_i .

A **trace** along an infinite branch $(S_i)_i$ is a sequence $(t_i)_{i \ge n}$ such that:

- **1** t_i is a a precursor of t_{i+1} ; or
- **2** $t_{i+1} < t_i$ occurs in the antecedent of S_i . (a 'progress point')

Definition (∞ -proofs)

A ∞ -**proof** (or just 'proof') is a preproof where each infinite branch has an infinitely progressing trace.

Irrationality of $\sqrt{2}$ again

$$\frac{\vdots}{b^2 = 2c^2 \Rightarrow} \bullet \\ \frac{c < a, 4c^2 = 2b^2 \Rightarrow}{\exists x < a.a = 2x, a^2 = 2b^2 \Rightarrow} \\ \frac{a^2 = 2b^2 \Rightarrow}{\Rightarrow \forall x, y. x^2 \neq 2y^2} \bullet \\ \bullet$$

Irrationality of $\sqrt{2}$ again

$$\frac{\vdots}{b^2 = 2c^2 \Rightarrow} \bullet \\ \frac{c \le a, 4c^2 = 2b^2 \Rightarrow}{\exists x < a.a = 2x, a^2 = 2b^2 \Rightarrow} \\ \frac{a^2 = 2b^2 \Rightarrow}{\Rightarrow \forall x, y. x^2 \neq 2y^2} \bullet \\ \end{array}$$

There is an infinitely progressing trace $(a, c, b)^{\omega}$.

Theorem (folklore) If A has a ∞ -proof, then $\mathbb{N} \vDash A$.

```
Theorem (folklore)
If A has a \infty-proof, then \mathbb{N} \vDash A.
```

Proof idea.

- Suppose otherwise, and build a branch of invalid sequents $(S_i)_i$.
- Simultaneously build assignments ρ_i witnessing the invalidity.

Theorem (folklore) If A has a ∞ -proof, then $\mathbb{N} \vDash A$.

Proof idea.

- Suppose otherwise, and build a branch of invalid sequents $(S_i)_i$.
- Simultaneously build assignments ρ_i witnessing the invalidity.
- By definition, there is an infinitely progressing trace $(t_i)_{i \ge n}$ along $(S_i)_i$.
- Can induce an infinite descending sequence $ho_{i_1}(t_{i_1}) >
 ho_{i_2}(t_{i_2}) > \cdots$

A finitary fragment: the cyclic proofs

A finitary fragment: the cyclic proofs

Definition

A **cyclic** (or **regular**) proof is a ∞ -proof with only finitely many distinct subtrees.

Definition

A **cyclic** (or **regular**) proof is a ∞ -proof with only finitely many distinct subtrees. CA is the theory of sentences that have cyclic proofs.

Proposition (folklore)

We can effectively check if a finite labelled graph is a correct cyclic proof.

Definition

A **cyclic** (or **regular**) proof is a ∞ -proof with only finitely many distinct subtrees. CA is the theory of sentences that have cyclic proofs.

Proposition (folklore)

We can effectively check if a finite labelled graph is a correct cyclic proof.

Proof.

Let π be a regular preproof. Define:

- \mathcal{A}_b^{π} a (deterministic) Büchi automaton recognising infinite branches of π .
- \mathcal{A}_t^{π} a NBA recognising branches of π with an infinitely progressing trace.

Now simply check if $\mathcal{L}(\mathcal{A}_b^{\pi}) \subseteq \mathcal{L}(\mathcal{A}_t^{\pi})$.

Definition

A **cyclic** (or **regular**) proof is a ∞ -proof with only finitely many distinct subtrees. CA is the theory of sentences that have cyclic proofs.

Proposition (folklore)

We can effectively check if a finite labelled graph is a correct cyclic proof.

Proof.

Let π be a regular preproof. Define:

- + \mathcal{A}_b^{π} a (deterministic) Büchi automaton recognising infinite branches of π .
- \mathcal{A}_t^{π} a NBA recognising branches of π with an infinitely progressing trace.

Now simply check if $\mathcal{L}(\mathcal{A}_b^{\pi}) \subseteq \mathcal{L}(\mathcal{A}_t^{\pi})$.

NB: inclusion of Büchi automata is **PSPACE**-complete.

Outline

1 Peano and Cyclic Arithmetic

2 Summary of previous work and contributions

3 From induction to cycles

4 From cycles to induction

5 Some further results

6 Conclusions

Previous work

Previous work

Theorem (Simpson '11) CA = PA.

Previous work

Theorem (Simpson '11)

CA = PA.

- Formalises soundness argument for ∞ -proofs in an appropriate fragment of SO arithmetic (ACA₀).
- (Basic automaton theory for ω -languages, can be carried out in ACA₀.)
Theorem (Simpson '11)

CA = PA.

- Formalises soundness argument for ∞ -proofs in an appropriate fragment of SO arithmetic (ACA₀).
- (Basic automaton theory for ω -languages, can be carried out in ACA₀.)
- The result for PA is obtained by conservativity of ACA_0 over PA.

Theorem (Simpson '11)

CA = PA.

- Formalises soundness argument for $\infty\mbox{-}proofs$ in an appropriate fragment of SO arithmetic (ACA_0).
- (Basic automaton theory for ω -languages, can be carried out in ACA₀.)
- The result for PA is obtained by conservativity of ACA_0 over PA.
- Possibly non-elementary blowup in proof size, due to non-uniformity.

Theorem (Simpson '11)

CA = PA.

- Formalises soundness argument for ∞ -proofs in an appropriate fragment of SO arithmetic (ACA₀).
- (Basic automaton theory for ω -languages, can be carried out in ACA₀.)
- The result for PA is obtained by conservativity of ACA_0 over PA.
- Possibly non-elementary blowup in proof size, due to non-uniformity.

Theorem (Implicit in Berardi & Tatsuta '17)

CA + I = PA + I for any set of Martin-Löf ordinary inductive definitions I and their associated rules.

• 'Structural' argument, relying on proof-level manipulations.

Theorem (Simpson '11)

CA = PA.

- Formalises soundness argument for $\infty\mbox{-} proofs$ in an appropriate fragment of SO arithmetic (ACA_0).
- (Basic automaton theory for ω -languages, can be carried out in ACA₀.)
- The result for PA is obtained by conservativity of ACA_0 over PA.
- Possibly non-elementary blowup in proof size, due to non-uniformity.

Theorem (Implicit in Berardi & Tatsuta '17)

CA + I = PA + I for any set of Martin-Löf ordinary inductive definitions I and their associated rules.

- 'Structural' argument, relying on proof-level manipulations.
- Relies on some nontrivial infinitary combinatorics specialised to arithmetic.

Theorem (Simpson '11)

CA = PA.

- Formalises soundness argument for $\infty\mbox{-} proofs$ in an appropriate fragment of SO arithmetic (ACA_0).
- (Basic automaton theory for ω -languages, can be carried out in ACA₀.)
- The result for PA is obtained by conservativity of ACA_0 over PA.
- Possibly non-elementary blowup in proof size, due to non-uniformity.

Theorem (Implicit in Berardi & Tatsuta '17)

CA + I = PA + I for any set of Martin-Löf ordinary inductive definitions I and their associated rules.

- 'Structural' argument, relying on proof-level manipulations.
- Relies on some nontrivial infinitary combinatorics specialised to arithmetic.
- High logical complexity.

Definition

Write $C\Sigma_n$ for the theory axiomatised by the universal closures of CA proofs containing only Σ_n -formulae.

NB: A $C\Sigma_n$ proof of a Σ_n sequent will contain only Σ_n formulae anyway, by free-cut elimination.

Definition

Write $C\Sigma_n$ for the theory axiomatised by the universal closures of CA proofs containing only Σ_n -formulae.

NB: A $C\Sigma_n$ proof of a Σ_n sequent will contain only Σ_n formulae anyway, by free-cut elimination.

Question (Simpson '17)

• How does the logical complexity of CA and PA compare? Does $C\Sigma_m = I\Sigma_n$ for appropriately chosen m, n?

Definition

Write $C\Sigma_n$ for the theory axiomatised by the universal closures of CA proofs containing only Σ_n -formulae.

NB: A $C\Sigma_n$ proof of a Σ_n sequent will contain only Σ_n formulae anyway, by free-cut elimination.

Question (Simpson '17)

- How does the logical complexity of CA and PA compare? Does $C\Sigma_m = I\Sigma_n$ for appropriately chosen m, n?
- Output the proof complexity of PA and CA compare?

Definition

Write $C\Sigma_n$ for the theory axiomatised by the universal closures of CA proofs containing only Σ_n -formulae.

NB: A $C\Sigma_n$ proof of a Σ_n sequent will contain only Σ_n formulae anyway, by free-cut elimination.

Question (Simpson '17)

- How does the logical complexity of CA and PA compare? Does CΣ_m = IΣ_n for appropriately chosen m, n?
- Output the proof complexity of PA and CA compare?
- 3 Does cut-admissibility hold for any non-trivial fragment of CA?

It is tempting to think that $I\Sigma_n = C\Sigma_n$.

It is tempting to think that $I\Sigma_n = C\Sigma_n$. However this is not the case:

Example (Simpson '17)

Recall the Ackermann-Péter function:

$$A(x,y) = \begin{cases} y+1 & x=0\\ A(x-1,1,z) & x>0, y=0\\ A(x-1,A(x,y-1)) & x, y>0 \end{cases}$$

Let A(x, y, z) be an appropriate \sum_{i} formula computing its graph.

It is tempting to think that $I\Sigma_n = C\Sigma_n$. However this is not the case:

Example (Simpson '17)

Recall the Ackermann-Péter function:

$$A(x,y) = \begin{cases} y+1 & x=0\\ A(x-1,1,z) & x>0, y=0\\ A(x-1,A(x,y-1)) & x, y>0 \end{cases}$$

Let A(x, y, z) be an appropriate \sum_{i} formula computing its graph. We have:

On the other hand, some intuitions have simple proofs:

Proposition For $n \ge 0$, $C\Sigma_n = C\Pi_n$. On the other hand, some intuitions have simple proofs:

Proposition

For $n \geq 0$, $C\Sigma_n = C\Pi_n$.

Proof.

Simply replace every sequent $\vec{p}, \Gamma \Rightarrow \Delta$ with $\vec{p}, \bar{\Gamma} \Rightarrow \bar{\Delta}$, where \vec{p} exhausts all atomic formulae in the antecedent.

Theorem $C\Sigma_n = I\Sigma_{n+1}$, over Π_{n+1} theorems.

Theorem $C\Sigma_n = I\Sigma_{n+1}$, over Π_{n+1} theorems.

 \supseteq : by structural methods manipulating normal forms of inductive proofs.

Theorem $C\Sigma_n = I\Sigma_{n+1}$, over Π_{n+1} theorems.

- \supseteq : by structural methods manipulating normal forms of inductive proofs.
- \subseteq : soundness argument can be formalised in conservative SO extensions.

Theorem $C\Sigma_n = I\Sigma_{n+1}$, over Π_{n+1} theorems.

- \supseteq : by structural methods manipulating normal forms of inductive proofs.
- \subseteq : soundness argument can be formalised in conservative SO extensions.

Theorem PA and CA proof size differs only elementarily.

Theorem $C\Sigma_n = I\Sigma_{n+1}$, over Π_{n+1} theorems.

- \supseteq : by structural methods manipulating normal forms of inductive proofs.
- \subseteq : soundness argument can be formalised in conservative SO extensions.

Theorem

PA and CA proof size differs only elementarily.

Proof idea.

Soundness argument can be made uniform in PA. Relies on:

- Deterministic acceptance of branch automaton is arithmetical.
- Well-foundedness of only finite ordinals is needed for the argument.
- ~ arithmetical approximation of non-deterministic acceptance.

Outline

1 Peano and Cyclic Arithmetic

2 Summary of previous work and contributions

3 From induction to cycles

4 From cycles to induction

5 Some further results

6 Conclusions

Main lemma

Main lemma

Lemma Let π be a $I\Pi_{n+1}$ proof, containing only Π_{n+1} formulae, of

$$\Gamma, \forall x_1.A_1, \dots, \forall x_l.A_l \Rightarrow \Delta, \forall y_1.B_1, \dots, \forall y_m.B_m$$
(1)

where Γ, Δ, A_i, B_j are Σ_n and \vec{x}, \vec{y} occur only in \vec{A}, \vec{B} respectively.

Main lemma

Lemma Let π be a $I\Pi_{n+1}$ proof, containing only II_{n+1} formulae, of

$$\Gamma, \forall x_1.A_1, \dots, \forall x_l.A_l \Rightarrow \Delta, \forall y_1.B_1, \dots, \forall y_m.B_m$$
(1)

where Γ , Δ , A_i , B_j are Σ_n and \vec{x} , \vec{y} occur only in \vec{A} , \vec{B} respectively. Then there is a $C\Sigma_n$ derivation $\lceil \pi \rceil$ of the form:

Moreover, no free variables of (1) occur as eigenvariables in $\lceil \pi \rceil$.

Translation of an induction step to a cyclic proof, idea

If π extends proofs π_0, π' by an induction step,

$$\frac{\Gamma, \forall \vec{x}. \vec{A} \Rightarrow \Delta, \forall \vec{y}. \vec{B}, \forall z. C(0) \quad \Gamma, \forall \vec{x}. \vec{A}, \forall z. C(c) \Rightarrow \Delta, \forall \vec{y}. \vec{B}, \forall z. C(sc)}{\Gamma, \forall \vec{x}. \vec{A} \Rightarrow \Delta, \forall \vec{y}. \vec{B}, \forall x. C(t)}$$

we define $\lceil \pi \rceil$ to be the following cyclic proof:

Outline

1 Peano and Cyclic Arithmetic

2 Summary of previous work and contributions

3 From induction to cycles

4 From cycles to induction

5 Some further results

6 Conclusions

Reason about infinite words/sets in conservative SO extensions of FO arithmetic.

 $\mathsf{RCA}_0 \approx I\Sigma_1 \approx \text{ primitive recursive arithmetic}$

Reason about infinite words/sets in conservative SO extensions of FO arithmetic.

 $\mathsf{RCA}_0 \approx I\Sigma_1 \approx \text{ primitive recursive arithmetic}$

For an appropriate formalisation of NBA complementation, we have: Theorem (Kolodziejczyk, Michalewski, Pradic & Skrzypczak '16)

$$\mathsf{RCA}_{0} + \Sigma_{2} \operatorname{\mathsf{-IND}} \vdash \forall \operatorname{NBA} \mathcal{A} \cdot \forall X \cdot (X \in \mathcal{L}(\mathcal{A}^{c}) \equiv X \notin \mathcal{L}(\mathcal{A}))$$
(2)

Reason about infinite words/sets in conservative SO extensions of FO arithmetic.

 $\mathsf{RCA}_{\circ} \approx I\Sigma_{1} \approx \text{ primitive recursive arithmetic}$

For an appropriate formalisation of NBA complementation, we have: Theorem (Kolodziejczyk, Michalewski, Pradic & Skrzypczak '16)

$$\mathsf{RCA}_0 + \Sigma_2 \mathsf{-IND} \vdash \forall \, NBA \, \mathcal{A}. \, \forall X. \, (X \in \mathcal{L}(\mathcal{A}^c) \equiv X \notin \mathcal{L}(\mathcal{A}))$$
(2)

Moreover, for each NBA A, we have:

$$\mathsf{RCA}_{\mathsf{O}} \vdash \forall X. \ (X \in \mathcal{L}(\mathcal{A}^c) \equiv X \notin \mathcal{L}(\mathcal{A}))$$
(3)

Reason about infinite words/sets in conservative SO extensions of FO arithmetic.

 $\mathsf{RCA}_{\circ} \approx I\Sigma_{1} \approx \text{ primitive recursive arithmetic}$

For an appropriate formalisation of NBA complementation, we have: Theorem (Kolodziejczyk, Michalewski, Pradic & Skrzypczak '16)

$$\mathsf{RCA}_0 + \Sigma_2 \mathsf{-IND} \vdash \forall \, NBA \, \mathcal{A}. \, \forall X. \, (X \in \mathcal{L}(\mathcal{A}^c) \equiv X \notin \mathcal{L}(\mathcal{A}))$$
(2)

Moreover, for each NBA A, we have:

$$\mathsf{RCA}_{\mathsf{O}} \vdash \forall X. \ (X \in \mathcal{L}(\mathcal{A}^c) \equiv X \notin \mathcal{L}(\mathcal{A}))$$
(3)

NB: (3) is implicit in that work. It is not trivial!

Write $\operatorname{ArAcc}(X, \mathcal{A}_2)$ for:

"eventually, there are runs of X on A_2 hitting final states arbitrarily often"

Write $\operatorname{ArAcc}(X, \mathcal{A}_2)$ for:

"eventually, there are runs of X on A_2 hitting final states arbitrarily often"

Theorem $I\Sigma_1(X) + "A_2$ has a complement" proves:

 \forall DBA $\mathcal{A}_1.($ " $\mathcal{A}_1 \subseteq \mathcal{A}_2$ " $\land X \in \mathcal{L}(\mathcal{A}_1)) \supset$ ArAcc (X, \mathcal{A}_2)

Write $\operatorname{ArAcc}(X, \mathcal{A}_2)$ for:

"eventually, there are runs of X on A_2 hitting final states arbitrarily often"

Theorem $I\Sigma_1(X) + "\mathcal{A}_2 \text{ has a complement" proves:}$ $\forall DBA \mathcal{A}_1.("\mathcal{A}_1 \subseteq \mathcal{A}_2" \land X \in \mathcal{L}(\mathcal{A}_1)) \supset ArAcc(X, \mathcal{A}_2)$

- $X \in \mathcal{L}(\mathcal{A}_1)$ is arithmetical due to determinism.
- (Emptiness, unions and intersections of NBA formalisable in $\mathsf{RCA}_{\circ}.)$
From cycles to induction

Write $\operatorname{ArAcc}(X, \mathcal{A}_2)$ for:

"eventually, there are runs of X on A_2 hitting final states arbitrarily often"

Theorem $I\Sigma_1(X) + "\mathcal{A}_2$ has a complement" proves: $\forall DBA \mathcal{A}_1.("\mathcal{A}_1 \subseteq \mathcal{A}_2" \land X \in \mathcal{L}(\mathcal{A}_1)) \supset ArAcc(X, \mathcal{A}_2)$

- $X \in \mathcal{L}(\mathcal{A}_1)$ is arithmetical due to determinism.
- (Emptiness, unions and intersections of NBA formalisable in RCA₀.)

The soundness argument of $C\Sigma_n$ constructs a Δ_{n+1} -definable invalid branch,

From cycles to induction

Write $\operatorname{ArAcc}(X, \mathcal{A}_2)$ for:

"eventually, there are runs of X on A_2 hitting final states arbitrarily often"

Theorem $I\Sigma_1(X) + "\mathcal{A}_2$ has a complement" proves: $\forall DBA \mathcal{A}_1.("\mathcal{A}_1 \subseteq \mathcal{A}_2" \land X \in \mathcal{L}(\mathcal{A}_1)) \supset ArAcc(X, \mathcal{A}_2)$

- $X \in \mathcal{L}(\mathcal{A}_1)$ is arithmetical due to determinism.
- (Emptiness, unions and intersections of NBA formalisable in $\mathsf{RCA}_{\circ}.)$

The soundness argument of $C\Sigma_n$ constructs a Δ_{n+1} -definable invalid branch, so: Corollary

1 PA elementarily simulates CA.

$$2 I\Sigma_{n+1} \supseteq C\Sigma_n.$$

Outline

1 Peano and Cyclic Arithmetic

2 Summary of previous work and contributions

3 From induction to cycles

4 From cycles to induction

5 Some further results

Provably recursive functions of $C\Delta_{\rm O}$

• For $n \ge 1$, the provably recursive functions of $C\Sigma_n$ are just those of $I\Sigma_{n+1}$.

Provably recursive functions of $C\Delta_{\rm O}$

- For $n \ge 1$, the provably recursive functions of $C\Sigma_n$ are just those of $I\Sigma_{n+1}$.
- However $C\Delta_0$ is Π_1 -axiomatised, so by Parikh's theorem we have:

Corollary

The provably recursive functions of $C\Delta_0$ are just those of $I\Delta_0$, i.e. the linear-time hierarchy.

Provably recursive functions of $C\Delta_{\rm O}$

- For $n \ge 1$, the provably recursive functions of $C\Sigma_n$ are just those of $I\Sigma_{n+1}$.
- However $C\Delta_0$ is Π_1 -axiomatised, so by Parikh's theorem we have:

Corollary

The provably recursive functions of $C\Delta_0$ are just those of $I\Delta_0$, i.e. the linear-time hierarchy.

Failure of cut-admissibility

Provably recursive functions of $C\Delta_{\rm O}$

- For $n \ge 1$, the provably recursive functions of $C\Sigma_n$ are just those of $I\Sigma_{n+1}$.
- However $C\Delta_0$ is Π_1 -axiomatised, so by Parikh's theorem we have:

Corollary

The provably recursive functions of $C\Delta_0$ are just those of $I\Delta_0$, i.e. the linear-time hierarchy.

Failure of cut-admissibility

Corollary

For $n \ge 1$, the class of CA proofs with only $\sum_{n=1}$ cuts is not complete for $C\Sigma_n$.

Provably recursive functions of $C\Delta_{\rm O}$

- For $n \ge 1$, the provably recursive functions of $C\Sigma_n$ are just those of $I\Sigma_{n+1}$.
- However $C\Delta_0$ is Π_1 -axiomatised, so by Parikh's theorem we have:

Corollary

The provably recursive functions of $C\Delta_0$ are just those of $I\Delta_0$, i.e. the linear-time hierarchy.

Failure of cut-admissibility

Corollary

For $n \ge 1$, the class of CA proofs with only \sum_{n-1} cuts is not complete for $C\Sigma_n$.

Proof.

• $I\Sigma_{n+1} \vdash \mathsf{Con}_{I\Sigma_n}$ so $C\Sigma_n \vdash \mathsf{Con}_{I\Sigma_n}$ by \prod_{n+1} -conservativity.

Provably recursive functions of $C\Delta_{\rm O}$

- For $n \ge 1$, the provably recursive functions of $C\Sigma_n$ are just those of $I\Sigma_{n+1}$.
- However $C\Delta_0$ is Π_1 -axiomatised, so by Parikh's theorem we have:

Corollary

The provably recursive functions of $C\Delta_0$ are just those of $I\Delta_0$, i.e. the linear-time hierarchy.

Failure of cut-admissibility

Corollary

For $n \ge 1$, the class of CA proofs with only $\sum_{n=1}$ cuts is not complete for $C\Sigma_n$.

Proof.

- $I\Sigma_{n+1} \vdash \mathsf{Con}_{I\Sigma_n}$ so $C\Sigma_n \vdash \mathsf{Con}_{I\Sigma_n}$ by Π_{n+1} -conservativity.
- On the other hand, $C\Sigma_{n-1} \nvDash Con_{I\Sigma_n}$ since otherwise $I\Sigma_n \vdash Con_{I\Sigma_n}$.

Reflection and consistency

Reflection and consistency

Rephrasing our results in terms of logical strength, we have:

Corollary

For $n \geq 0$, $I\Sigma_{n+2} \vdash \prod_{n+1} - \mathsf{Rfn}_{C\Sigma_n}$.

Reflection and consistency

Rephrasing our results in terms of logical strength, we have:

Corollary

For $n \geq 0$, $I\Sigma_{n+2} \vdash \prod_{n+1}$ -Rfn_{$C\Sigma_n$}. In particular we have $I\Sigma_{n+2} \vdash Con_{C\Sigma_n}$.

Incompleteness

Reflection and consistency

Rephrasing our results in terms of logical strength, we have:

Corollary

For $n \geq 0$, $I\Sigma_{n+2} \vdash \prod_{n+1}$ -Rfn_{$C\Sigma_n$}. In particular we have $I\Sigma_{n+2} \vdash Con_{C\Sigma_n}$.

Incompleteness

Unsurprisingly, we have Gödel incompleteness for all fragments $C\Sigma_n$.

Reflection and consistency

Rephrasing our results in terms of logical strength, we have:

Corollary

For $n \geq 0$, $I\Sigma_{n+2} \vdash \prod_{n+1} \operatorname{Rfn}_{C\Sigma_n}$. In particular we have $I\Sigma_{n+2} \vdash \operatorname{Con}_{C\Sigma_n}$.

Incompleteness

Unsurprisingly, we have Gödel incompleteness for all fragments $C\Sigma_n$. In particular, we have:

Corollary

For $n \geq 0$, $I\Sigma_{n+1} \nvDash \operatorname{Con}_{C\Sigma_n}$.

Reflection and consistency

Rephrasing our results in terms of logical strength, we have:

Corollary

For $n \geq 0$, $I\Sigma_{n+2} \vdash \prod_{n+1} \operatorname{Rfn}_{C\Sigma_n}$. In particular we have $I\Sigma_{n+2} \vdash \operatorname{Con}_{C\Sigma_n}$.

Incompleteness

Unsurprisingly, we have Gödel incompleteness for all fragments $C\Sigma_n$. In particular, we have:

Corollary

For $n \geq 0$, $I\Sigma_{n+1} \nvDash \operatorname{Con}_{C\Sigma_n}$.

Proof.

Otherwise $C\Sigma_n \vdash Con_{C\Sigma_n}$ by Π_{n+1} -conservativity.

In fact, there is a curious consequence for ω -automaton theory.

In fact, there is a curious consequence for ω -automaton theory.

Theorem

A natural formulation of McNaughton's theorem, that every NBA has an equivalent deterministic parity automaton, is not provable in RCA₀.

In fact, there is a curious consequence for $\omega\text{-}\mathrm{automaton}$ theory.

Theorem

A natural formulation of McNaughton's theorem, that every NBA has an equivalent deterministic parity automaton, is not provable in RCA₀.

Proof idea.

• If \mathcal{A}_1 is a DBA, we can check $\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$ by complementing \mathcal{A}_1 in RCA₀ and checking for universality of $\mathcal{A}_1^c \cup \mathcal{A}_2$.

In fact, there is a curious consequence for $\omega\text{-}\mathrm{automaton}$ theory.

Theorem

A natural formulation of McNaughton's theorem, that every NBA has an equivalent deterministic parity automaton, is not provable in RCA₀.

Proof idea.

- If \mathcal{A}_1 is a DBA, we can check $\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$ by complementing \mathcal{A}_1 in RCA₀ and checking for universality of $\mathcal{A}_1^c \cup \mathcal{A}_2$.
- (Given McNaughton, we may check universality already in RCA_).

In fact, there is a curious consequence for $\omega\textsc{-}automaton$ theory.

Theorem

A natural formulation of McNaughton's theorem, that every NBA has an equivalent deterministic parity automaton, is not provable in RCA₀.

Proof idea.

- If \mathcal{A}_1 is a DBA, we can check $\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$ by complementing \mathcal{A}_1 in RCA₀ and checking for universality of $\mathcal{A}_1^c \cup \mathcal{A}_2$.
- (Given McNaughton, we may check universality already in RCA₀).
- This allows us to formalise, say, the soundness of $C\Delta_0$ already in $I\Sigma_1$, contradicting Gödel's second incompletess result for $C\Delta_0$.

In fact, there is a curious consequence for $\omega\text{-}\mathrm{automaton}$ theory.

Theorem

A natural formulation of McNaughton's theorem, that every NBA has an equivalent deterministic parity automaton, is not provable in RCA₀.

Proof idea.

- If \mathcal{A}_1 is a DBA, we can check $\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$ by complementing \mathcal{A}_1 in RCA₀ and checking for universality of $\mathcal{A}_1^c \cup \mathcal{A}_2$.
- (Given McNaughton, we may check universality already in RCA_).
- This allows us to formalise, say, the soundness of $C\Delta_0$ already in $I\Sigma_1$, contradicting Gödel's second incompletess result for $C\Delta_0$.

This was not known before!

Outline

1 Peano and Cyclic Arithmetic

- 2 Summary of previous work and contributions
- 3 From induction to cycles
- 4 From cycles to induction
- Some further results

What about cyclic versions of Gödel's System T?

What about cyclic versions of Gödel's System T? \rightsquigarrow recent progress with the Lyonese school.

What about cyclic versions of Gödel's System T? ~> recent progress with the Lyonese school.

Interestingly, Ackermann-Péter has a 'type-0' cyclic proof:

What about cyclic versions of Gödel's System T? → recent progress with the Lyonese school.

Interestingly, Ackermann-Péter has a 'type-0' cyclic proof:

Question

Does 'cyclic-T' exhibit a 1-level improvement over T?

What about cyclic versions of Gödel's System T? → recent progress with the Lyonese school.

Interestingly, Ackermann-Péter has a 'type-0' cyclic proof:

Question

Does 'cyclic-T' exhibit a 1-level improvement over T?

Work-in-progress: a Dialectica-style functional interpretation of CA.

Optimal logical complexity result. In fact: Corollary $C\Sigma_n$ is precisley the \prod_{n+1} consequences of $I\Sigma_{n+1}$.

Optimal logical complexity result. In fact:

Corollary $C\Sigma_n$ is precisely the \prod_{n+1} consequences of $I\Sigma_{n+1}$.

Proof complexity differs only elementarily. In fact:

Corollary

PA *exponentially simulates* CA. This is optimal, unless there is a more efficient way to check cyclic proof soundness.

Optimal logical complexity result. In fact:

Corollary $C\Sigma_n$ is precisely the \prod_{n+1} consequences of $I\Sigma_{n+1}$.

Proof complexity differs only elementarily. In fact:

Corollary

PA *exponentially simulates* CA. This is optimal, unless there is a more efficient way to check cyclic proof soundness.

Question

What is the logical strength of McNaughton's theorem, in general?

Optimal logical complexity result. In fact:

Corollary $C\Sigma_n$ is precisely the \prod_{n+1} consequences of $I\Sigma_{n+1}$.

Proof complexity differs only elementarily. In fact:

Corollary

PA *exponentially simulates* CA. This is optimal, unless there is a more efficient way to check cyclic proof soundness.

Question

What is the logical strength of McNaughton's theorem, in general?

Thank you.