Continuous Model Theory Revisited.
Association for Symbolic Logic.

H. Jerome Keisler

March 26, 2020
1. Overview of Continuous Model Theory

General structures: Like first order structures without equality, but predicates and formulas have truth values in $[0, 1]$.

H. Jerome Keisler

Continuous Model Theory Revisited. Plenary

March 26, 2020
1. Overview of Continuous Model Theory

General structures: Like first order structures without equality, but predicates and formulas have truth values in $[0, 1]$.

Metric structures: General structures with extra requirements—a distinguished metric, uniformly continuous functions and predicates.

A highly developed model theory parallel to first order model theory.
1. Overview of Continuous Model Theory

General structures: Like first order structures without equality, but predicates and formulas have truth values in $[0, 1]$.

Metric structures: General structures with extra requirements—a distinguished metric, uniformly continuous functions and predicates.

A highly developed model theory parallel to first order model theory.

Analogy

Metric structures / First order structures with equality

General structures / First order structures without equality.
1. Overview of Continuous Model Theory

General structures: Like first order structures without equality, but predicates and formulas have truth values in $[0, 1]$.

Metric structures: General structures with extra requirements—a distinguished metric, uniformly continuous functions and predicates. A highly developed model theory parallel to first order model theory.

- **Analogy**

 Metric structures / First order structures with equality

 General structures / First order structures without equality.

- **Punch Line**

 Almost all of the model theory for metric structures carries over in a precise way to general $[0, 1]$-valued structures.
2. General Structures

Syntax:

Vocabulary V: predicate, function, and constant symbols.

In this talk, V is always countable.
2. General Structures

Syntax:

Vocabulary V: predicate, function, and constant symbols.
In this talk, V is always countable.
Truth values: $[0, 1]$, $0 = \text{True}$, $1 = \text{False}$.
Variables: x_0, x_1, \ldots
Connectives: continuous functions $C : [0, 1]^n \to [0, 1]$.
Quantifiers: sup, inf.
Terms, atomic formulas: as in first order logic.
Formulas, sentences: built using connectives and quantifiers.
2. General Structures

Syntax:

Vocabulary V: predicate, function, and constant symbols.
In this talk, V is always countable.
Truth values: $[0, 1]$, $0 = \text{True}$, $1 = \text{False}$.
Variables: x_0, x_1, \ldots
Connectives: continuous functions $C : [0, 1]^n \rightarrow [0, 1]$.
Quantifiers: sup, inf.
Terms, atomic formulas: as in first order logic.
Formulas, sentences: built using connectives and quantifiers.

General structure \mathcal{M} with vocabulary V and universe M:

$F^\mathcal{M} : M^n \rightarrow M$ for each n-ary function symbol $F \in V$.
$P^\mathcal{M} : M^n \rightarrow [0, 1]$ for each n-ary predicate symbol $P \in V$.
$c^\mathcal{M} \in M$ for each constant symbol in $c \in V$.
$\varphi^\mathcal{M} : M^{\lvert \overrightarrow{x} \rvert} \rightarrow [0, 1]$ is defined inductively on formulas $\varphi(\overrightarrow{x})$.
3. Pre-metric and Metric Structures

[Ben Yaacov, Berenstein, Henson, Usvyatzev, 2008]

Signature L: A vocabulary equipped with distinguished binary predicate symbol d (for distance) and a modulus of uniform continuity for each function and predicate symbol.

Pre-metric structure M with signature L:
General structure where d_M is a pseudo-metric, and for each symbol $S \in V$, S_M is uniformly continuous with respect to d_M.

(More complicated than general structures.)

Follows that each ϕ_M (\cdot) is uniformly continuous w.r.t. d_M.

Metric theory: A set of sentences U equipped with a signature L such that every general model of U is a pre-metric structure.

Metric structure: Pre-metric structure where d_M is a complete metric.

Every pre-metric structure M has a unique completion $M^\equiv = M$.

Canonical example: Unit ball of a Banach space.
3. Pre-metric and Metric Structures

[Ben Yaacov, Berenstein, Henson, Usvyatzev, 2008]

Signature L: A vocabulary equipped with distinguished binary predicate symbol d (for distance) and a modulus of uniform continuity for each function and predicate symbol.
3. Pre-metric and Metric Structures

[Ben Yaacov, Berenstein, Henson, Usvyatzev, 2008]

Signature L: A vocabulary equipped with distinguished binary predicate symbol d (for distance) and a modulus of uniform continuity for each function and predicate symbol.

Pre-metric structure \mathcal{M} with signature L: General structure where $d^\mathcal{M}$ is a pseudo-metric, and for each symbol $S \in V$, $S^\mathcal{M}$ is uniformly continuous with respect to $d^\mathcal{M}$ with the modulus given by L.

(More complicated than general structures.)

Follows that each $\varphi^\mathcal{M}(.)$ is uniformly continuous w.r.t. $d^\mathcal{M}$.

Metric theory: A set of sentences U equipped with a signature L such that every general model of U is a pre-metric structure.

Metric structure: Pre-metric structure \mathcal{M} where $d^\mathcal{M}$ is a complete metric.

Every pre-metric structure \mathcal{M} has a unique completion $\mathcal{M} \equiv \bar{\mathcal{M}}$.

Canonical example: Unit ball of a Banach space.
3. Pre-metric and Metric Structures

[Ben Yaacov, Berenstein, Henson, Usvyatzev, 2008]

Signature L: A vocabulary equipped with distinguished binary predicate symbol d (for distance) and a modulus of uniform continuity for each function and predicate symbol.

Pre-metric structure \mathcal{M} with signature L:
General structure where $d^{\mathcal{M}}$ is a pseudo-metric, and for each symbol $S \in V$, $S^{\mathcal{M}}$ is uniformly continuous with respect to $d^{\mathcal{M}}$ with the modulus given by L.

(More complicated than general structures.)
Follows that each $\varphi^{\mathcal{M}}(.)$ is uniformly continuous w.r.t. $d^{\mathcal{M}}$.

Metric theory: A set of sentences U equipped with a signature L such that every general model of U is a pre-metric structure.
3. Pre-metric and Metric Structures

[Ben Yaacov, Berenstein, Henson, Usvyatzev, 2008]

Signature L: A vocabulary equipped with distinguished binary predicate symbol d (for distance) and a modulus of uniform continuity for each function and predicate symbol.

Pre-metric structure \mathcal{M} with signature L:
General structure where $d^{\mathcal{M}}$ is a pseudo-metric, and for each symbol $S \in V$, $S^{\mathcal{M}}$ is uniformly continuous with respect to $d^{\mathcal{M}}$ with the modulus given by L.
(More complicated than general structures.)
Follows that each $\varphi^{\mathcal{M}}(.)$ is uniformly continuous w.r.t. $d^{\mathcal{M}}$.

Metric theory: A set of sentences U equipped with a signature L such that every general model of U is a pre-metric structure.

Metric structure: Pre-metric structure where $d^{\mathcal{M}}$ is a complete metric. Every pre-metric structure \mathcal{M} has a unique completion $\overline{\mathcal{M}} \equiv \mathcal{M}$.
Canonical example: Unit ball of a Banach space.
4. Basic Model Theory for General Structures

A general theory T is a set of sentences.

φ^M denotes truth value in $[0, 1]$ of sentence φ in M.

$M \models T$ means $\varphi^M = 0$ for all $\varphi \in T$.

4. Basic Model Theory for General Structures

A general theory T is a set of sentences.
φ^M denotes truth value in $[0, 1]$ of sentence φ in M.
$M \models T$ means $\varphi^M = 0$ for all $\varphi \in T$.

The following are defined as usual:
$M \equiv N$, $M \prec N$, $Th(M)$.

Type of b over A: $tp_M(b/A) = Th(M, \{b\} \cup A)$.

M is λ-saturated if for every $A \subseteq M$ of size $< \lambda$,
every type over A realized in some $N \succ M$ is realized in M.
4. Basic Model Theory for General Structures

A **general theory** T is a set of sentences.

φ^M denotes truth value in $[0, 1]$ of sentence φ in M.

$M \models T$ means $\varphi^M = 0$ for all $\varphi \in T$.

The following are defined as usual:

$M \equiv N$, $M \prec N$, $Th(M)$.

Type of b over A: $tp_M(b/A) = Th(M, \{b\} \cup A)$.

M is λ-saturated if for every $A \subseteq M$ of size $< \lambda$,

every type over A realized in some $N \succ M$ is realized in M.

Reduction of M: Identify a, b if $(M, a, \bar{x}) \equiv (M, b, \bar{x})$ for all $\bar{x} \subseteq M$.

If M, N are reduced, $M \cong N$ says they are isomorphic.
4. Basic Model Theory for General Structures

A **general theory** \(T \) is a set of sentences.
\(\varphi^\mathcal{M} \) denotes truth value in \([0, 1]\) of sentence \(\varphi \) in \(\mathcal{M} \).
\(\mathcal{M} \models T \) means \(\varphi^\mathcal{M} = 0 \) for all \(\varphi \in T \).

The following are defined as usual:
\(\mathcal{M} \equiv \mathcal{N} \), \(\mathcal{M} \prec \mathcal{N} \), \(\text{Th}(\mathcal{M}) \).

Type of \(b \) over \(A \): \(\text{tp}_{\mathcal{M}}(b/A) = \text{Th}(\mathcal{M}, \{b\} \cup A) \).

\(\mathcal{M} \) is **\(\lambda \)-saturated** if for every \(A \subseteq M \) of size \(< \lambda \), every type over \(A \) realized in some \(\mathcal{N} \succ \mathcal{M} \) is realized in \(\mathcal{M} \).

Reduction of \(\mathcal{M} \): Identify \(a, b \) if \((\mathcal{M}, a, \vec{x}) \equiv (\mathcal{M}, b, \vec{x}) \) for all \(\vec{x} \subseteq M \).
If \(\mathcal{M}, \mathcal{N} \) are reduced, \(\mathcal{M} \cong \mathcal{N} \) says they are isomorphic.

Ultraproducts constructed using reduction.

Compactness Theorem proved using ultraproducts.

Monster structure: Reduced and \(\kappa \)-saturated of inaccessible size \(\kappa > \aleph_0 \).

Small means of cardinality \(< \kappa \).
5. Definable Predicates

Let T be a general theory.

Definition

A sequence of formulas $\langle \varphi_k(\vec{x}) \rangle_{k \in \mathbb{N}}$ is **Cauchy** in T if

$$(\forall \varepsilon > 0)(\exists m)(\forall k \geq m) \models \sup_{\vec{x}} |\varphi_m(\vec{x}) - \varphi_k(\vec{x})| \leq \varepsilon.$$
5. Definable Predicates

Let T be a general theory.

Definition

A sequence of formulas $\langle \varphi_k(\vec{x}) \rangle_{k \in \mathbb{N}}$ is **Cauchy** in T if

$$(\forall \varepsilon > 0)(\exists m)(\forall k \geq m) T \models \sup_{\vec{x}} |\varphi_m(\vec{x}) - \varphi_k(\vec{x})| \leq \varepsilon.$$

If $\langle \varphi_k(\vec{x}) \rangle_{k \in \mathbb{N}}$ is Cauchy in T, then for each $M \models T$, we write

$$[\lim \varphi_k]_M(\cdot) = \lim_{k \to \infty} \varphi_k^M(\cdot).$$

This limit always exists. $[\lim \varphi_k]_M$ maps $M|\vec{x}|$ into $[0, 1]$, and is called a **definable predicate** in M.
6. The Main Definition: Pre-metric Expansion

Let V be a vocabulary, $V_D = V \cup \{D\}$, D a binary predicate symbol, T a general theory with vocabulary V.

Definition T is a pre-metric expansion of T if:

(i) T is a metric theory whose signature L is over V_D with distance D.

(ii) There is a sequence $\langle d \rangle = \langle d^k(x,y) \rangle_{k \in \mathbb{N}}$ of V-formulas Cauchy in T such that the general models of T are exactly the structures $M_e = (M,\lim d^k_M)$ where $M|_T = T$.

M_e is called the pre-metric expansion of M for T.

$\langle d \rangle$ is called an approximate distance for T. (Not unique).

Note that D_{M_e} is a definable predicate in M (defined by $\langle d \rangle$).
Let \(V \) be a vocabulary, \(V_D = V \cup \{ D \} \), \(D \) a binary predicate symbol, \(T \) a general theory with vocabulary \(V \).

Definition

\(T_e \) is a **pre-metric expansion** of \(T \) if:

(i) \(T_e \) is a metric theory whose signature \(L_e \) is over \(V_D \) with distance \(D \).

(ii) There is a sequence \(\langle d \rangle = \langle d_k(x, y) \rangle_{k \in \mathbb{N}} \) of \(V \)-formulas Cauchy in \(T \) such that the general models of \(T_e \) are exactly the structures \(\mathcal{M}_e = (\mathcal{M}, [\lim d_k]^{\mathcal{M}}) \) where \(\mathcal{M} \models T \).
6. The Main Definition: Pre-metric Expansion

Let V be a vocabulary, $V_D = V \cup \{D\}$, D a binary predicate symbol, T a general theory with vocabulary V.

Definition

T_e is a **pre-metric expansion** of T if:

(i) T_e is a metric theory whose signature L_e is over V_D with distance D.

(ii) There is a sequence $\langle d \rangle = \langle d_k(x,y) \rangle_{k \in \mathbb{N}}$ of V-formulas Cauchy in T such that the general models of T_e are exactly the structures $\mathcal{M}_e = (\mathcal{M}, [\lim d_k]^\mathcal{M})$ where $\mathcal{M} \models T$.

\mathcal{M}_e is called the **pre-metric expansion** of \mathcal{M} for T_e. $\langle d \rangle$ is called an **approximate distance** for T_e. (Not unique).

Note that $D^\mathcal{M}_e$ is a definable predicate in \mathcal{M} (defined by $\langle d \rangle$).
7. The Metric Expansion Theorem

Theorem

Every general theory has a pre-metric expansion.
The Metric Expansion Theorem

Theorem

Every general theory has a pre-metric expansion.

Stronger form:

Theorem

Every general theory T has a pre-metric expansion T_e with an approximate distance $\langle d_k \rangle_{k \in \mathbb{N}}$ such that d_k^M is a pseudo-metric for every $k \in \mathbb{N}$ and $M \models T$.
7. The Metric Expansion Theorem

Theorem

Every general theory has a pre-metric expansion.

Stronger form:

Theorem

Every general theory T has a pre-metric expansion T_e with an approximate distance $\langle d_k \rangle_{k \in \mathbb{N}}$ such that d_k^M is a pseudo-metric for every $k \in \mathbb{N}$ and $M \models T$.

These results have far-reaching consequences,
7. The Metric Expansion Theorem

Theorem

Every general theory has a pre-metric expansion.

Stronger form:

Theorem

Every general theory T has a pre-metric expansion T_e with an approximate distance $\langle d_k \rangle_{k \in \mathbb{N}}$ such that d_k^M is a pseudo-metric for every $k \in \mathbb{N}$ and $M \models T$.

These results have far-reaching consequences, which extend most of the model theory for metric structures to general structures.
A **property** is a class of structures closed under isomorphism.

Definition

A property \mathcal{P} of general structures is **absolute** if for every general structure \mathcal{M} and pre-metric expansion \mathcal{M}_e, \mathcal{M} has property \mathcal{P} if and only if \mathcal{M}_e has property \mathcal{P}.

Trivial Example: For each \mathcal{V}-formula $\phi(\vec{x})$ and tuple \vec{a} of parameters, the property $\mathcal{M}|=\phi(\vec{a})$ is absolute.
A property is a class of structures closed under isomorphism.

Definition

A property \mathcal{P} of general structures is **absolute** if for every general structure \mathcal{M} and pre-metric expansion \mathcal{M}_e, \mathcal{M} has property \mathcal{P} if and only if \mathcal{M}_e has property \mathcal{P}.

If A is a set of new constant symbols, then every pre-metric expansion of T as a V-theory is also a pre-metric expansion of T as a $(V \cup A)$-theory.
8. Absoluteness

A property is a class of structures closed under isomorphism.

Definition

A property \(P \) of general structures is **absolute** if for every general structure \(M \) and pre-metric expansion \(M_e \), \(M \) has property \(P \) if and only if \(M_e \) has property \(P \).

If \(A \) is a set of new constant symbols, then every pre-metric expansion of \(T \) as a \(V \)-theory is also a pre-metric expansion of \(T \) as a \((V \cup A)\)-theory.

Since \(M \) and \(M_e \) have the same universe set \(M \), we can consider absoluteness of properties with extra parameters from \(M \).
A **property** is a class of structures closed under isomorphism.

Definition

A property \mathcal{P} of general structures is **absolute** if for every general structure \mathcal{M} and pre-metric expansion \mathcal{M}_e, \mathcal{M} has property \mathcal{P} if and only if \mathcal{M}_e has property \mathcal{P}.

If A is a set of new constant symbols, then every pre-metric expansion of T as a V-theory is also a pre-metric expansion of T as a $(V \cup A)$-theory.

Since \mathcal{M} and \mathcal{M}_e have the same universe set M, we can consider absoluteness of properties with extra parameters from M.

Trivial Example: For each V-formula $\varphi(\vec{x})$ and tuple \vec{a} of parameters, the property $\mathcal{M} \models \varphi(\vec{a})$ is absolute.
The property of being reduced is absolute.
Proposition

The property of being reduced is absolute.

The property of a mapping $P : M^n \rightarrow [0, 1]$ being a definable predicate is absolute.

That is, P is definable in \mathcal{M} iff P is definable in \mathcal{M}_e.

Being an elementary substructure is absolute.

That is, if $M, N \models T$, then $M \preceq N$ iff $M_e \preceq N_e$.

And b and c having the same type over A is absolute.

Being λ-saturated is absolute.

Being a monster structure is absolute.
9. Some Absolute Properties of General Structures

Proposition

The property of being reduced is absolute.

The property of a mapping $P: M^n \to [0,1]$ being a definable predicate is absolute.
That is, P is definable in \mathcal{M} iff P is definable in \mathcal{M}_e.

Being an elementary substructure is absolute.
That is, if $\mathcal{M}, \mathcal{N} \models T$, then $\mathcal{M} \prec \mathcal{N}$ iff $\mathcal{M}_e \prec \mathcal{N}_e$.
9. Some Absolute Properties of General Structures

Proposition

The property of being reduced is absolute.

The property of a mapping $P : M^n \rightarrow [0, 1]$ being a definable predicate is absolute.

That is, P is definable in \mathcal{M} iff P is definable in \mathcal{M}_e.

Being an elementary substructure is absolute.

That is, if $\mathcal{M}, \mathcal{N} \models T$, then $\mathcal{M} \prec \mathcal{N}$ iff $\mathcal{M}_e \prec \mathcal{N}_e$.

b and c having the same type over A is absolute.
Proposition

The property of being reduced is absolute.

The property of a mapping $P : M^n \rightarrow [0, 1]$ being a definable predicate is absolute.
That is, P is definable in \mathcal{M} iff P is definable in \mathcal{M}_e.

Being an elementary substructure is absolute.
That is, if $\mathcal{M}, \mathcal{N} \models T$, then $\mathcal{M} \prec \mathcal{N}$ iff $\mathcal{M}_e \prec \mathcal{N}_e$.

b and c having the same type over A is absolute.

Being λ-saturated is absolute.
9. Some Absolute Properties of General Structures

Proposition

The property of being reduced is absolute.

The property of a mapping $P : M^n \rightarrow [0, 1]$ being a definable predicate is absolute.

That is, P is definable in M iff P is definable in M_e.

Being an elementary substructure is absolute.

That is, if $M, N \models T$, then $M \prec N$ iff $M_e \prec N_e$.

b and c having the same type over A is absolute.

Being λ-saturated is absolute.

Being a monster structure is absolute.
10. Absolute Version of a Pre-metric Property

Definition

A property \mathcal{P} of general structures is an **absolute version** of a property \mathcal{Q} of pre-metric structures if \mathcal{P} is absolute and agrees with \mathcal{Q} on pre-metric structures.

Corollary (of the Metric Expansion Theorem)

Every property \mathcal{Q} of pre-metric structures has ≤ 1 absolute version.

Proof.

Suppose $\mathcal{P}_1, \mathcal{P}_2$ are absolute versions of \mathcal{Q}. Consider a general \mathcal{M}. By the Metric Expansion Theorem, \mathcal{M} has a pre-metric expansion \mathcal{M}_e. Then $\mathcal{P}_1(\mathcal{M})$ iff $\mathcal{P}_1(\mathcal{M}_e)$ iff $\mathcal{Q}(\mathcal{M}_e)$ iff $\mathcal{P}_2(\mathcal{M}_e)$ iff $\mathcal{P}_2(\mathcal{M})$.

H. Jerome Keisler
March 26, 2020 11 / 20
10. Absolute Version of a Pre-metric Property

Definition
A property P of general structures is an absolute version of a property Q of pre-metric structures if P is absolute and agrees with Q on pre-metric structures.

Corollary (of the Metric Expansion Theorem)
Every property Q of pre-metric structures has ≤ 1 absolute version.
10. Absolute Version of a Pre-metric Property

Definition
A property \mathcal{P} of general structures is an absolute version of a property \mathcal{Q} of pre-metric structures if \mathcal{P} is absolute and agrees with \mathcal{Q} on pre-metric structures.

Corollary (of the Metric Expansion Theorem)
Every property \mathcal{Q} of pre-metric structures has ≤ 1 absolute version.

Proof.
Suppose $\mathcal{P}_1, \mathcal{P}_2$ are absolute versions of \mathcal{Q}. Consider a general \mathcal{M}.
10. Absolute Version of a Pre-metric Property

Definition
A property \mathcal{P} of general structures is an absolute version of a property \mathcal{Q} of pre-metric structures if \mathcal{P} is absolute and agrees with \mathcal{Q} on pre-metric structures.

Corollary (of the Metric Expansion Theorem)

Every property \mathcal{Q} of pre-metric structures has ≤ 1 absolute version.

Proof.

Suppose $\mathcal{P}_1, \mathcal{P}_2$ are absolute versions of \mathcal{Q}. Consider a general \mathcal{M}. By the Metric Expansion Theorem, \mathcal{M} has a pre-metric expansion \mathcal{M}_e.
Definition
A property P of general structures is an **absolute version** of a property Q of pre-metric structures if P is absolute and agrees with Q on pre-metric structures.

Corollary (of the Metric Expansion Theorem)
Every property Q of pre-metric structures has ≤ 1 absolute version.

Proof.
Suppose P_1, P_2 are absolute versions of Q. Consider a general M. By the Metric Expansion Theorem, M has a pre-metric expansion M_e. Then $P_1(M)$ iff $P_1(M_e)$ iff $Q(M_e)$ iff $P_2(M_e)$ iff $P_2(M)$.
11. From Pre-metric to General Properties

If a property Q of pre-metric structures has an absolute version P, we consider P to be the “right” extension of Q to general structures.
If a property Q of pre-metric structures has an absolute version P, we consider P to be the “right” extension of Q to general structures.

We say that a general structure has a pre-metric property Q if it satisfies the absolute version of Q.

Most of the main properties of pre-metric structures in the literature have absolute versions that can be characterized in terms of M itself without mentioning pre-metric expansions. (For example, $\text{Th}(M)$ being stable, simple, or rosy).

Plan: Build a library of such characterizations of absolute versions.

Some Properties Without Absolute Versions:

- D has diameter one.
- $\phi(M)$ is Lipschitz continuous with respect to D.

H. Jerome Keisler
Continuous Model Theory Revisited. Plenary
March 26, 2020
If a property Q of pre-metric structures has an absolute version P, we consider P to be the “right” extension of Q to general structures.

We say that a general structure has a pre-metric property Q if it satisfies the absolute version of Q.

Most of the main properties of pre-metric structures in the literature have absolute versions that can be characterized in terms of M itself without mentioning pre-metric expansions.
If a property Q of pre-metric structures has an absolute version P, we consider P to be the “right” extension of Q to general structures.

We say that a general structure has a pre-metric property Q if it satisfies the absolute version of Q.

Most of the main properties of pre-metric structures in the literature have absolute versions that can be characterized in terms of \mathcal{M} itself without mentioning pre-metric expansions.

(For example, $Th(\mathcal{M})$ being stable, simple, or rosy).
11. From Pre-metric to General Properties

If a property Q of pre-metric structures has an absolute version P, we consider P to be the “right” extension of Q to general structures.

We say that a general structure has a pre-metric property Q if it satisfies the absolute version of Q.

Most of the main properties of pre-metric structures in the literature have absolute versions that can be characterized in terms of M itself without mentioning pre-metric expansions. (For example, $Th(M)$ being stable, simple, or rosy).

Plan: Build a library of such characterizations of absolute versions.
11. From Pre-metric to General Properties

If a property Q of pre-metric structures has an absolute version P, we consider P to be the “right” extension of Q to general structures.

We say that a general structure has a pre-metric property Q if it satisfies the absolute version of Q.

Most of the main properties of pre-metric structures in the literature have absolute versions that can be characterized in terms of M itself without mentioning pre-metric expansions. (For example, $Th(M)$ being stable, simple, or rosy).

Plan: Build a library of such characterizations of absolute versions.

Some Properties Without Absolute Versions:

- D has diameter one.
If a property Q of pre-metric structures has an absolute version P, we consider P to be the “right” extension of Q to general structures.

We say that a general structure has a pre-metric property Q if it satisfies the absolute version of Q.

Most of the main properties of pre-metric structures in the literature have absolute versions that can be characterized in terms of \mathcal{M} itself without mentioning pre-metric expansions. (For example, $Th(\mathcal{M})$ being stable, simple, or rosy).

Plan: Build a library of such characterizations of absolute versions.

Some Properties Without Absolute Versions:

- D has diameter one.
- $\varphi^\mathcal{M}$ is Lipschitz continuous with respect to D.
12. Topological and Uniform Properties

Proposition

A set $S \subseteq M^n$ being closed has an absolute version.

S is closed iff there is a set $\Phi(\vec{x})$ of V-formulas such that

$$S = \{ \vec{b} \in M^k : M \models \Phi(\vec{b}) \}.$$
12. Topological and Uniform Properties

Proposition

A set $S \subseteq M^n$ being closed has an absolute version. S is closed iff there is a set $\Phi(\vec{x})$ of V-formulas such that

$$S = \{ \vec{b} \in M^k : \mathcal{M} \models \Phi(\vec{b}) \}.$$

Corollary

A set $S \subseteq M^n$ being compact has an absolute version. S_0 being dense in S has an absolute version. The property that $\langle b_k \rangle$ converges to c has an absolute version.
12. Topological and Uniform Properties

Proposition

A set $S \subseteq M^n$ being closed has an absolute version.

S is closed iff there is a set $\Phi(\vec{x})$ of V-formulas such that

$$S = \{ \vec{b} \in M^k : \mathcal{M} \models \Phi(\vec{b}) \}.$$

Corollary

A set $S \subseteq M^n$ being compact has an absolute version.

S_0 being dense in S has an absolute version.

The property that $\langle b_k \rangle$ converges to c has an absolute version.

Proposition

A sequence of elements $\langle b_k \rangle$ being Cauchy has an absolute version.

$\langle b_k \rangle$ is Cauchy in \mathcal{M} iff it has a limit in some $\mathcal{N} \succ \mathcal{M}$.
Corollary

Being a complete structure has an absolute version. So
Corollary

Being a complete structure has an absolute version. So \mathcal{M} is complete iff every pre-metric expansion of \mathcal{M} is a metric structure.
13. Completions of General Structures

Corollary

Being a complete structure has an absolute version. So \mathcal{M} is complete iff every pre-metric expansion of \mathcal{M} is a metric structure. \mathcal{M} is complete iff it is reduced and each Cauchy $\langle b_k \rangle$ has a limit in \mathcal{M}.
Corollary

Being a complete structure has an absolute version. So \mathcal{M} is complete iff every pre-metric expansion of \mathcal{M} is a metric structure. \mathcal{M} is complete iff it is reduced and each Cauchy $\langle b_k \rangle$ has a limit in \mathcal{M}.

Definition

A general structure \mathcal{M} is a completion of \mathcal{N} if \mathcal{M} is complete and the reduction of \mathcal{N} is a dense elementary substructure of \mathcal{M}.

Corollary

Every general structure has a unique completion up to isomorphism.
Corollary

Being a complete structure has an absolute version. So \(M \) is complete iff every pre-metric expansion of \(M \) is a metric structure. \(M \) is complete iff it is reduced and each Cauchy \(\langle b_k \rangle \) has a limit in \(M \).

Definition

A general structure \(M \) is a **completion** of \(N \) if \(M \) is complete and the reduction of \(N \) is a dense elementary substructure of \(M \).

Corollary

Every general structure has a unique completion up to isomorphism.

Proposition

Every \(\aleph_1 \)-saturated reduced general structure is complete. So every monster structure is complete.
In a metric structure, a set S is **definable over** A if S is closed and $\text{dist}(x, S) = \inf\{D(x, y) : y \in S\}$ is a definable predicate over A.

$b \in \text{dcl}(A)$ if $\{b\}$ is definable over A.

$b \in \text{acl}(A)$ if $b \in C$ for some compact C definable over A.

In a metric structure, a set S is **definable over** A if S is closed and $\text{dist}(x, S) = \inf \{D(x, y) : y \in S\}$ is a definable predicate over A.

$b \in \text{dcl}(A)$ if $\{b\}$ is definable over A.

$b \in \text{acl}(A)$ if $b \in C$ for some compact C definable over A.

Proposition

Being a definable set over A has an absolute version.

S is definable over A iff S is closed and for each V-formula $\varphi^M(x, y)$, if φ^M is a pseudo-metric then $\text{dist}_\varphi(x, S) = \inf \{\varphi(x, y) : y \in S\}$ is a definable predicate over A.
14. Definable and Algebraic Closure

In a metric structure, a set S is **definable over** A if S is closed and
$$\text{dist}(x, S) = \inf\{D(x, y) : y \in S\}$$
is a definable predicate over A.

$b \in \text{dcl}(A)$ if $\{b\}$ is definable over A.

$b \in \text{acl}(A)$ if $b \in C$ for some compact C definable over A.

Proposition

Being a definable set over A has an absolute version.
S is definable over A iff S is closed and for each V-formula $\varphi^M(x, y)$, if φ^M is a pseudo-metric then
$$\text{dist}_\varphi(x, S) = \inf\{\varphi(x, y) : y \in S\}$$
is a definable predicate over A.

Proposition

$b \in \text{dcl}(A)$ and $b \in \text{acl}(A)$ have absolute versions.

Let \mathcal{M} be reduced and \aleph_1-saturated.

$b \in \text{dcl}(A)$ iff b is the only realization of $\text{tp}(b/A)$ in \mathcal{M}.

$b \in \text{acl}(A)$ iff the set $\{c : \text{tp}(c/A) = \text{tp}(b/A)\}$ is compact in \mathcal{M}.
15. Stable Theories

Definition

A complete general theory T with monster model \mathcal{M} is stable if there is a small cardinal $\lambda < |\mathcal{M}|$ such that whenever $A \subseteq \mathcal{M}$ and $|A| \leq \lambda$, the set of complete types over A in \mathcal{M} has cardinality $\leq \lambda$.

Corollary

Being stable is absolute.

A stable independence relation is a ternary relation on small sets that satisfies Invariance, Symmetry, Transitivity, Finite Character, Full Existence, Local Character, and Stationarity.

Theorem

A complete general theory T is stable iff the monster model of T has a (unique) stable independence relation.
A complete general theory T with monster model \mathcal{M} is stable if there is a small cardinal $\lambda < |\mathcal{M}|$ such that whenever $A \subseteq M$ and $|A| \leq \lambda$, the set of complete types over A in \mathcal{M} has cardinality $\leq \lambda$.

Corollary

Being stable is absolute.
15. Stable Theories

Definition
A complete general theory T with monster model \mathcal{M} is **stable** if there is a small cardinal $\lambda < |\mathcal{M}|$ such that whenever $A \subseteq \mathcal{M}$ and $|A| \leq \lambda$, the set of complete types over A in \mathcal{M} has cardinality $\leq \lambda$.

Corollary
Being stable is absolute.

A **stable independence relation** is a ternary relation on small sets that satisfies Invariance, Symmetry, Transitivity, Finite Character, Full Existence, Local Character, and Stationarity.
15. Stable Theories

Definition

A complete general theory T with monster model \mathcal{M} is **stable** if there is a small cardinal $\lambda < |\mathcal{M}|$ such that whenever $A \subseteq \mathcal{M}$ and $|A| \leq \lambda$, the set of complete types over A in \mathcal{M} has cardinality $\leq \lambda$.

Corollary

Being stable is absolute.

A **stable independence relation** is a ternary relation on small sets that satisfies Invariance, Symmetry, Transitivity, Finite Character, Full Existence, Local Character, and Stationarity.

Theorem

A complete general theory T is stable iff the monster model of T has a (unique) stable independence relation.
16. Comparing Theories via Ultrapowers

Let \mathcal{M}, \mathcal{N} be general structures, T, U be complete continuous theories.

Definition

D **saturates** \mathcal{M} if D is a regular ultrafilter over a set I, and the ultrapower \mathcal{M}^I/D is $|I|^+$-saturated.
Let \mathcal{M}, \mathcal{N} be general structures, T, U be complete continuous theories.

Definition

- \mathcal{D} **saturates** \mathcal{M} if \mathcal{D} is a regular ultrafilter over a set I, and the ultrapower $\mathcal{M}^I/\mathcal{D}$ is $|I|^+$-saturated.
- $\mathcal{M} \preceq \mathcal{N}$ if every \mathcal{D} that saturates \mathcal{N} saturates \mathcal{M}.
- $\mathcal{M} \triangleleft \mathcal{N}$ if $\mathcal{M} \preceq \mathcal{N}$ but not $\mathcal{N} \preceq \mathcal{M}$.
Let \mathcal{M}, \mathcal{N} be general structures, T, U be complete continuous theories.

Definition

D **saturates** \mathcal{M} if D is a regular ultrafilter over a set I, and the ultrapower \mathcal{M}^I/D is $|I|^+\text{-saturated}$.

$\mathcal{M} \preceq \mathcal{N}$ if every D that saturates \mathcal{N} saturates \mathcal{M}.

$\mathcal{M} \triangleleft \mathcal{N}$ if $\mathcal{M} \preceq \mathcal{N}$ but not $\mathcal{N} \preceq \mathcal{M}$.

Theorem

If $\mathcal{M} \equiv \mathcal{N}$, then $\mathcal{M} \preceq \mathcal{N}$ and $\mathcal{N} \preceq \mathcal{M}$.

The case where \mathcal{M}, \mathcal{N} are first-order (FO) structures is in Keisler 1967.
Let \mathcal{M}, \mathcal{N} be general structures, T, U be complete continuous theories.

Definition

\mathcal{D} saturates \mathcal{M} if \mathcal{D} is a regular ultrafilter over a set I, and the ultrapower \mathcal{M}/\mathcal{D} is $|I|^+-$saturated.

$\mathcal{M} \triangleleft \mathcal{N}$ if every \mathcal{D} that saturates \mathcal{N} saturates \mathcal{M}.

$\mathcal{M} \triangleleft \triangleleft \mathcal{N}$ if $\mathcal{M} \triangleleft \mathcal{N}$ but not $\mathcal{N} \triangleleft \mathcal{M}$.

Theorem

If $\mathcal{M} \equiv \mathcal{N}$, then $\mathcal{M} \triangleleft \mathcal{N}$ and $\mathcal{N} \triangleleft \mathcal{M}$.

The case where \mathcal{M}, \mathcal{N} are first-order (FO) structures is in Keisler 1967.

$T \triangleleft U$ means “$\mathcal{M} \models T \land \mathcal{N} \models U \Rightarrow \mathcal{M} \triangleleft \mathcal{N}$”.

$T \triangleleft = \{U: T \triangleleft U \text{ and } U \triangleleft T\}$.

\mathcal{G} is the set of all $T \triangleleft$. $(\mathcal{G}, \triangleleft)$ is a partial ordering.
16. Comparing Theories via Ultrapowers

Let \mathcal{M}, \mathcal{N} be general structures, T, U be complete continuous theories.

Definition

\mathcal{D} **saturates** \mathcal{M} if \mathcal{D} is a regular ultrafilter over a set I, and the ultrapower $\mathcal{M}^I/\mathcal{D}$ is $|I|^+$-saturated.

$\mathcal{M} \preceq \mathcal{N}$ if every \mathcal{D} that saturates \mathcal{N} saturates \mathcal{M}.

$\mathcal{M} \prec \mathcal{N}$ if $\mathcal{M} \preceq \mathcal{N}$ but not $\mathcal{N} \preceq \mathcal{M}$.

Theorem

If $\mathcal{M} \equiv \mathcal{N}$, then $\mathcal{M} \preceq \mathcal{N}$ and $\mathcal{N} \preceq \mathcal{M}$.

The case where \mathcal{M}, \mathcal{N} are first-order (FO) structures is in Keisler 1967. $T \preceq U$ means “$\mathcal{M} \models T \land \mathcal{N} \models U \Rightarrow \mathcal{M} \preceq \mathcal{N}$”.

$T \preceq = \{ U : T \preceq U \text{ and } U \preceq T \}$.

\mathcal{G} is the set of all $T \preceq$. (\mathcal{G}, \preceq) is a partial ordering.

Projects: Study (\mathcal{G}, \preceq). Use \preceq to classify structures.
17. Known Results for first-order (FO) Theories

Let $\mathcal{F} = \{ T \models \subseteq : T \text{ is first order} \}$. Let $T^{rg} = Th(\text{random graph})$.
17. Known Results for first-order (FO) Theories

Let $\mathcal{F} = \{ T : T \text{ is first order} \}$. Let $T^{rg} = Th(\text{random graph})$.

On this page, T, U denote complete FO theories.

Keisler, 1967: $(\mathcal{F}, \triangleleft)$ has minimal and maximal elements, $\min_{\mathcal{F}} \triangleleft \max_{\mathcal{F}}$.
17. Known Results for first-order (FO) Theories

Let $\mathbb{F} = \{ T \sqsubseteq: T \text{ is first order}\}$. Let $T^\text{rg} = \text{Th}(\text{random graph})$. On this page, T, U denote complete FO theories.

Keisler, 1967: $(\mathbb{F}, \sqsubseteq)$ has minimal and maximal elements, $\text{min}_\mathbb{F} \sqsubseteq \text{max}_\mathbb{F}$.

Shelah 1972: Let $\text{stb}_\mathbb{F} = \{ T \sqsubseteq: T \text{ stable but not } \sqsubseteq\text{-minimal}\}$.

$\text{stb}_\mathbb{F} \in \mathbb{F}$. For every unstable U, $\text{min}_\mathbb{F} \sqsubseteq \text{stb}_\mathbb{F} \sqsubseteq U \sqsubseteq$.

Malliaris 2012: T^rg is $\sqsubseteq\text{-minimal among unstable theories}$.

If $U \sqsubseteq T^\text{rg}$ then U is simple.

Malliaris-Shelah, 2016–2019: Every SOP_2 theory is $\sqsubseteq\text{-maximal}$ (converse is a conjecture).

H. Jerome Keisler

17. Known Results for first-order (FO) Theories

Let \(\mathcal{F} = \{ T \preceq : T \text{ is first order} \} \). Let \(T^{rg} = Th(\text{random graph}) \).
On this page, \(T, U \) denote complete FO theories.

Keisler, 1967: \((\mathcal{F}, \preceq)\) has minimal and maximal elements, \(\min_{\mathcal{F}} \preceq \max_{\mathcal{F}} \).

Shelah 1972: Let \(stb_{\mathcal{F}} = \{ T \preceq : T \text{ stable but not } \preceq\text{-minimal} \} \).
\(stb_{\mathcal{F}} \in \mathcal{F} \). For every unstable \(U \), \(\min_{\mathcal{F}} \preceq stb_{\mathcal{F}} \preceq U \preceq \).

Malliaris 2012: \(T^{rg} \) is \(\preceq\text{-minimal} \) among unstable theories.
Let $\mathcal{F} = \{ T\leq: T \text{ is first order}\}$. Let $T^{\text{rg}} = Th(\text{random graph})$. On this page, T, U denote complete FO theories.

Keisler, 1967: (\mathcal{F}, \leq) has minimal and maximal elements, $\text{min}_\mathcal{F} \triangleleft \text{max}_\mathcal{F}$.

Shelah 1972: Let $\text{stb}_\mathcal{F} = \{ T\leq: T \text{ stable but not } \leq\text{-minimal}\}$.

$\text{stb}_\mathcal{F} \in \mathcal{F}$. For every unstable U, $\text{min}_\mathcal{F} \triangleleft \text{stb}_\mathcal{F} \triangleleft U\leq$.

Malliaris 2012: T^{rg} is \leq-minimal among unstable theories. If $U \leq T^{\text{rg}}$ then U is simple. T^{rg} is not \leq-maximal.
17. Known Results for first-order (FO) Theories

Let $\mathcal{F} = \{ T \subseteq: T \text{ is first order}\}$. Let $T^{rg} = Th(\text{random graph})$.

On this page, T, U denote complete FO theories.

Keisler, 1967: $(\mathcal{F}, \triangleleft)$ has minimal and maximal elements, $\min_{\mathcal{F}} \triangleleft \max_{\mathcal{F}}$.

Shelah 1972: Let $stb_{\mathcal{F}} = \{ T \subseteq: T \text{ stable but not } \triangleleft\text{-minimal}\}$.

$stb_{\mathcal{F}} \in \mathcal{F}$. For every unstable U, $\min_{\mathcal{F}} \triangleleft stb_{\mathcal{F}} \triangleleft U_{\triangleleft}$.

Malliaris 2012: T^{rg} is \triangleleft-minimal among unstable theories.

If $U \triangleleft T^{rg}$ then U is simple. T^{rg} is not \triangleleft-maximal.

Malliaris-Shelah, 2016–2019:
Every SOP_2 theory is \triangleleft-maximal (converse is a conjecture).
Let $\mathcal{F} = \{ T \triangleleft : T \text{ is first order} \}$. Let $T^\text{rg} = Th(\text{random graph})$. On this page, T, U denote complete FO theories.

Keisler, 1967: $(\mathcal{F}, \triangleleft)$ has minimal and maximal elements, $\text{min}_\mathcal{F} \triangleleft \text{max}_\mathcal{F}$.

Shelah 1972: Let $\text{stb}_\mathcal{F} = \{ T \triangleleft : T \text{ stable but not } \triangleleft\text{-minimal} \}$. $\text{stb}_\mathcal{F} \in \mathcal{F}$. For every unstable U, $\text{min}_\mathcal{F} \triangleleft \text{stb}_\mathcal{F} \triangleleft U \triangleleft$.

Malliaris 2012: T^rg is \triangleleft-minimal among unstable theories. If $U \triangleleft T^\text{rg}$ then U is simple. T^rg is not \triangleleft-maximal.

Malliaris-Shelah, 2016–2019: Every SOP$_2$ theory is \triangleleft-maximal (converse is a conjecture).

$(\mathcal{F}, \triangleleft)$ restricted to simple FO theories is extremely rich. It contains a copy of $(\mathcal{P}(\mathbb{N}), \subseteq)$.
17. Known Results for first-order (FO) Theories

Let $\mathcal{F} = \{ T \trianglelefteq: T \text{ is first order} \}$. Let $T^{rg} = Th(\text{random graph})$.
On this page, T, U denote complete FO theories.

Keisler, 1967: $(\mathcal{F}, \trianglelefteq)$ has minimal and maximal elements, $\text{min}_\mathcal{F} \vartriangleleft \text{max}_\mathcal{F}$.

Shelah 1972: Let $\text{stb}_\mathcal{F} = \{ T \trianglelefteq: T \text{ stable but not } \trianglelefteq\text{-minimal} \}$.
$\text{stb}_\mathcal{F} \in \mathcal{F}$. For every unstable U, $\text{min}_\mathcal{F} \vartriangleleft \text{stb}_\mathcal{F} \vartriangleleft U \trianglelefteq$.

Malliaris 2012: T^{rg} is \trianglelefteq-minimal among unstable theories.
If $U \trianglelefteq T^{rg}$ then U is simple. T^{rg} is not \trianglelefteq-maximal.

Malliaris-Shelah, 2016–2019:
Every SOP_2 theory is \trianglelefteq-maximal (converse is a conjecture).

$(\mathcal{F}, \trianglelefteq)$ restricted to simple FO theories is extremely rich.
It contains a copy of $(\mathcal{P}(\mathbb{N}), \subseteq)$.

Suppose there is a super-compact cardinal.
If T is simple and $U \trianglelefteq T$, then U is simple.
On this page, T, U denote complete general theories. There is a natural embedding $h: (F, \sqsubseteq) \to (G, \sqsubseteq)$.
On this page, T, U denote complete general theories.
There is a natural embedding $h: (F, \sqsubseteq) \rightarrow (G, \sqsubseteq)$.

Theorem

$\mathcal{M} \sqsubseteq \mathcal{N}$ is absolute.

*For any pre-metric expansion T_e of T, $T \sqsubseteq T_e$ and $T_e \sqsubseteq T$.***
On this page, T, U denote complete general theories. There is a natural embedding $h: (F, ≪) → (G, ≪)$.

Theorem

$M ≪ N$ is absolute.
For any pre-metric expansion T_e of T, $T ≪ T_e$ and $T_e ≪ T$.

Let stb_G be the class of stable theories that are not $≪$-minimal.

Theorem

stb_G belongs to G.
18. The First Two Classes in (G, \triangleleft)

On this page, T, U denote complete general theories. There is a natural embedding $h: (F, \triangleleft) \rightarrow (G, \triangleleft)$.

Theorem

$M \triangleleft N$ is absolute.

For any pre-metric expansion T_e of T, $T \triangleleft T_e$ and $T_e \triangleleft T$.

Let stb_G be the class of stable theories that are not \triangleleft-minimal.

Theorem

stb_G belongs to G. For every unstable U, $\text{min}_G \triangleleft stb_G \triangleleft U_\triangleright$.
18. The First Two Classes in \((G, \preceq)\)

On this page, \(T, U\) denote complete general theories. There is a natural embedding \(h: (F, \preceq) \to (G, \preceq)\).

Theorem

\(M \preceq N\) is absolute.
For any pre-metric expansion \(T_e\) of \(T\), \(T \preceq T_e\) and \(T_e \preceq T\).

Let \(stb_G\) be the class of stable theories that are not \(\preceq\)-minimal.

Theorem

\(stb_G\) belongs to \(G\). *For every unstable \(U\), \(\text{min}_G \preceq \text{stb}_G \preceq U\).*

Question

Given a complete continuous theory \(T\), is there a FO theory \(T_0\) such that \(T \preceq T_0\) and \(T_0 \preceq T\)? Is \(h: (F, \preceq) \to (G, \preceq)\) onto?
References

