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Finiteness

Recall that a set X is said to be finite if there exists an n ∈ ω such that
|X| = |n| (here |x| = |y| is taken as an abbreviation of “there is a bijection
between x and y”).

Dedekind’s definition of finite: X is finite if every injective function
: X −→ X must be surjective. (Think in terms of negations: a set X is infinite,
according to Dedekind’s definition, if there exists an injective function
: X −→ X that is not surjective.)

It is easy to show that every finite (according to the usual definition) set must
be Dedekind-finite as well. However, the converse—though also
easy—requires some use of the Axiom of Choice.

To see why: the usual proof goes by contrapositive, starting from an infinite
set X and attempting to show that X is Dedekind infinite. One does this by
recursively choosing elements xn ∈ X \ {x0, . . . , xn−1} and then considering

the function f : X −→ X given by f(x) =

{
xn+1 if x = xn,

x otherwise
, which is

injective but not surjective. Clearly there’s a lot of choice involved in this
construction!
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Notions of finiteness Definition

Hence, in ZF, there are various different and non-equivalent ways of defining
finiteness of a set.

Definition
A finiteness class is a class F satisfying:

1 ω ⊆ F ,
2 X ∈ F and |X| = |Y | implies Y ∈ F ,
3 X ∈ F and Y ⊆ X implies Y ∈ F ,
4 ω /∈ F .

The smallest finiteness class is the class of all finite sets (denoted Fin). The
largest finiteness class is the class of all Dedekind-finite sets (denoted D-Fin).
In ZFC all finiteness classes are equal, but in ZF we have a rich theory of
finiteness classes and the relations between them, that has been
studied by various people (Blass, Truss, Howard, Herrlich, Tachtsis,
among others).
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Notions of finiteness Examples

Some examples of finiteness classes (that have been considered previously in
the literature):

Example

The class of all X such that it is impossible to partition X in two infinite
pieces (denoted A-Fin),
the class of all X such that there is no surjection : X −→ ω (denoted
C-Fin),
the class of all X such that no proper subset of X can surject onto X
(denoted E-fin).

All of these classes are (consistently) different from one another, as well as
from the classes Fin and D-Fin.
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New finiteness classes Ramsey-finiteness

Recall that Ramsey’s theorem (which is provable in ZFC) states that, for every
infinite set X, and for every colouring c : [X]2 −→ 2, there exists an infinite set
Y ⊆ X such that c � [Y ]2 is a constant function (we say that [Y ]2 is
monochromatic for c).

Thus, in ZF it makes sense to make a finiteness class
out of those sets for which Ramsey’s theorem fails.

Definition
We define the class R-Fin of all sets X for which there exists a colouring
c : [X]2 −→ 2 such that if Y ⊆ X is infinite, then [Y ]2 is not monochromatic for
c.
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New finiteness classes Hindman-finiteness

Recall also that Hindman’s theorem, when phrased in terms of finite unions,
states that for every colouring c : [ω]<ω −→ 2, there exists an infinite pairwise

disjoint family Y ⊆ [ω]<ω such that the set FU(Y ) =

{ ⋃
y∈F

y
∣∣F ∈ [Y ]<ω

}
is

monochromatic. In ZFC, we can replace [ω]<ω with [X]<ω whenever X is an
infinite set.

So in ZF it makes sense to make a finiteness class out of those
sets X for which this version of Hindman’s theorem fails.

Definition
We define the class H-Fin of all sets X for which there exists a colouring
c : [X]<ω −→ 2 such that if Y ⊆ X is infinite and pairwise disjoint, then FU(Y )
is not monochromatic for c.
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New finiteness classes Implications

The following are the implication relations between the different notions of
finiteness (equivalently, the inclusion relations between the different finiteness
classes).

Finite

t|

��

�&

A-finite

��
C-finite

�� !)

R-finite

}�

E-finite

�"

H-finite

��
D-finite.
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New finiteness classes Implications

Finite

t|

��

�&

A-finite

��
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�� !)

R-finite

}�

E-finite

�"

H-finite

��
D-finite.

These arrows exhaust the implications between these notions that are
provable in ZF.

How does one come up with an independence proof
in this context?
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Fränkel–Mostowski models The theory ZFA

The tool that we will use for our independence proofs is the technique of
Fränkel–Mostowski permutation models of ZFA.

The theory ZFA is as follows: the language contains, in addition to the symbol
∈, two constant simbols A and ∅. The axioms are just like those of ZF, except
that every quantifier ∀x gets replaced by ∀x /∈ A, and with the extra axioms
¬(∃x)(x ∈ ∅) and (∀z)(z ∈ A ⇐⇒ (z 6= ∅ ∧ ¬(∃x)(x ∈ z))). Intuitively, A is
the set of atoms—entities that do not contain elements, but rather can only be
themselves elements of other sets—.

Because ZFA includes a suitable modification of the Axiom of Foundation, in
this theory we also have an analog of Zermelo’s hierarchy: V0 = A,
Vα+1 = ℘(Vα) ∪ Vα, and Vα =

⋃
ξ<α

Vξ if α is a limit ordinal. We can also define

stuff by ∈-recursion.
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Fränkel–Mostowski models Permutations, supports

Suppose that π ∈ Sym(A), that is, π is a permutation of the elements of A.
Then π induces an automorphism of the whole universe, (denoted also by π
and) defined recursively by:

π(x) = {π(y)
∣∣y ∈ x}.

Now suppose that we have a subgroup G ⊆ Sym(A). A support for x (relative
to G) is a set E ⊆ A such that, whenever π, σ ∈ G, if π � E = σ � E, then
π(x) = σ(x) (that is, knowing where the elements of E are mapped already
determines where x is mapped). Equivalently, E is a support for x if and only if
every π ∈ G that pointwise fixes each element of E, must satisfy π(x) = x.
(Note that supports are not unique: if E is a support for x, and E ⊆ E′ ⊆ A,
then E′ is also a support for x).
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Fränkel–Mostowski models Symmetric and hereditarily symmetric sets

Definition

Work in the theory ZFA plus AC. Suppose that G is a subgroup of Sym(A).

x is symmetric (relative to G) if it admits a finite support (that is, if there
is a finite F ⊆ A such that F is a support for x relative to G),
x is hereditarily symmetric if and only if every element of the transitive
closure of x is symmetric.
The Fränkel–Mostowski model given by G (this also depends on the set
of atoms A) is the (transitive) class M(A,G) of all hereditarily symmetric
sets.

Theorem (Fränkel–Mostowski)
1 If x is a pure set (that is, the transitive closure of x does not contain any

atoms), then x ∈M(A,G),
2 A ∈M(A,G) (and thus A ⊆M(A,G) as well),
3 M(A,G) � ZFA (but, in general, M(A,G) 6� AC, even if we started by

assuming AC in the real world).
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Fränkel–Mostowski models Transfer theorems

The technique of Fränkel–Mostowski permutation models is extremely flexible
to obtain various models of ZFA.

What does this all have to do with ZF?

Theorem (Jech–Sochor)

If ϕ is a sufficiently simple formula (where “sufficiently simple” has a fairly
technical meaning, but all of the statements of interest here will be sufficiently
simple), then the existence of a Fränkel–Mostowski model M(A,G) � ϕ
implies the existence of a model of ZF+ ϕ.

For example, one can take the so-called first Fränkel Model. We begin by
taking a countably infinite A and let G = Sym(A). Then, in M(A,G), we have
that A is A-finite, H-finite, and R-infinite. This shows that H-finite does not
imply R-finite in ZFA, and so this implication does not hold in ZF either,
by the Jech–Sochor theorem.

D. Fernández (joint with J. Brot and M. Cao) (UNAM) Finiteness in choiceless contexts ASL 2020 12 / 14



Fränkel–Mostowski models Transfer theorems

The technique of Fränkel–Mostowski permutation models is extremely flexible
to obtain various models of ZFA. What does this all have to do with ZF?

Theorem (Jech–Sochor)

If ϕ is a sufficiently simple formula (where “sufficiently simple” has a fairly
technical meaning, but all of the statements of interest here will be sufficiently
simple), then the existence of a Fränkel–Mostowski model M(A,G) � ϕ
implies the existence of a model of ZF+ ϕ.

For example, one can take the so-called first Fränkel Model. We begin by
taking a countably infinite A and let G = Sym(A). Then, in M(A,G), we have
that A is A-finite, H-finite, and R-infinite. This shows that H-finite does not
imply R-finite in ZFA, and so this implication does not hold in ZF either,
by the Jech–Sochor theorem.

D. Fernández (joint with J. Brot and M. Cao) (UNAM) Finiteness in choiceless contexts ASL 2020 12 / 14



Fränkel–Mostowski models Transfer theorems

The technique of Fränkel–Mostowski permutation models is extremely flexible
to obtain various models of ZFA. What does this all have to do with ZF?

Theorem (Jech–Sochor)

If ϕ is a sufficiently simple formula

(where “sufficiently simple” has a fairly
technical meaning, but all of the statements of interest here will be sufficiently
simple), then the existence of a Fränkel–Mostowski model M(A,G) � ϕ
implies the existence of a model of ZF+ ϕ.

For example, one can take the so-called first Fränkel Model. We begin by
taking a countably infinite A and let G = Sym(A). Then, in M(A,G), we have
that A is A-finite, H-finite, and R-infinite. This shows that H-finite does not
imply R-finite in ZFA, and so this implication does not hold in ZF either,
by the Jech–Sochor theorem.

D. Fernández (joint with J. Brot and M. Cao) (UNAM) Finiteness in choiceless contexts ASL 2020 12 / 14



Fränkel–Mostowski models Transfer theorems

The technique of Fränkel–Mostowski permutation models is extremely flexible
to obtain various models of ZFA. What does this all have to do with ZF?

Theorem (Jech–Sochor)

If ϕ is a sufficiently simple formula (where “sufficiently simple” has a fairly
technical meaning, but all of the statements of interest here will be sufficiently
simple),

then the existence of a Fränkel–Mostowski model M(A,G) � ϕ
implies the existence of a model of ZF+ ϕ.

For example, one can take the so-called first Fränkel Model. We begin by
taking a countably infinite A and let G = Sym(A). Then, in M(A,G), we have
that A is A-finite, H-finite, and R-infinite. This shows that H-finite does not
imply R-finite in ZFA, and so this implication does not hold in ZF either,
by the Jech–Sochor theorem.

D. Fernández (joint with J. Brot and M. Cao) (UNAM) Finiteness in choiceless contexts ASL 2020 12 / 14



Fränkel–Mostowski models Transfer theorems

The technique of Fränkel–Mostowski permutation models is extremely flexible
to obtain various models of ZFA. What does this all have to do with ZF?

Theorem (Jech–Sochor)

If ϕ is a sufficiently simple formula (where “sufficiently simple” has a fairly
technical meaning, but all of the statements of interest here will be sufficiently
simple), then the existence of a Fränkel–Mostowski model M(A,G) � ϕ
implies the existence of a model of ZF+ ϕ.

For example, one can take the so-called first Fränkel Model. We begin by
taking a countably infinite A and let G = Sym(A). Then, in M(A,G), we have
that A is A-finite, H-finite, and R-infinite. This shows that H-finite does not
imply R-finite in ZFA, and so this implication does not hold in ZF either,
by the Jech–Sochor theorem.

D. Fernández (joint with J. Brot and M. Cao) (UNAM) Finiteness in choiceless contexts ASL 2020 12 / 14



Fränkel–Mostowski models Transfer theorems

The technique of Fränkel–Mostowski permutation models is extremely flexible
to obtain various models of ZFA. What does this all have to do with ZF?

Theorem (Jech–Sochor)

If ϕ is a sufficiently simple formula (where “sufficiently simple” has a fairly
technical meaning, but all of the statements of interest here will be sufficiently
simple), then the existence of a Fränkel–Mostowski model M(A,G) � ϕ
implies the existence of a model of ZF+ ϕ.

For example, one can take the so-called first Fränkel Model.

We begin by
taking a countably infinite A and let G = Sym(A). Then, in M(A,G), we have
that A is A-finite, H-finite, and R-infinite. This shows that H-finite does not
imply R-finite in ZFA, and so this implication does not hold in ZF either,
by the Jech–Sochor theorem.

D. Fernández (joint with J. Brot and M. Cao) (UNAM) Finiteness in choiceless contexts ASL 2020 12 / 14



Fränkel–Mostowski models Transfer theorems

The technique of Fränkel–Mostowski permutation models is extremely flexible
to obtain various models of ZFA. What does this all have to do with ZF?

Theorem (Jech–Sochor)

If ϕ is a sufficiently simple formula (where “sufficiently simple” has a fairly
technical meaning, but all of the statements of interest here will be sufficiently
simple), then the existence of a Fränkel–Mostowski model M(A,G) � ϕ
implies the existence of a model of ZF+ ϕ.

For example, one can take the so-called first Fränkel Model. We begin by
taking a countably infinite A and let G = Sym(A). Then, in M(A,G), we have
that A is A-finite, H-finite, and R-infinite.

This shows that H-finite does not
imply R-finite in ZFA, and so this implication does not hold in ZF either,
by the Jech–Sochor theorem.

D. Fernández (joint with J. Brot and M. Cao) (UNAM) Finiteness in choiceless contexts ASL 2020 12 / 14



Fränkel–Mostowski models Transfer theorems

The technique of Fränkel–Mostowski permutation models is extremely flexible
to obtain various models of ZFA. What does this all have to do with ZF?

Theorem (Jech–Sochor)

If ϕ is a sufficiently simple formula (where “sufficiently simple” has a fairly
technical meaning, but all of the statements of interest here will be sufficiently
simple), then the existence of a Fränkel–Mostowski model M(A,G) � ϕ
implies the existence of a model of ZF+ ϕ.

For example, one can take the so-called first Fränkel Model. We begin by
taking a countably infinite A and let G = Sym(A). Then, in M(A,G), we have
that A is A-finite, H-finite, and R-infinite. This shows that H-finite does not
imply R-finite in ZFA,

and so this implication does not hold in ZF either,
by the Jech–Sochor theorem.

D. Fernández (joint with J. Brot and M. Cao) (UNAM) Finiteness in choiceless contexts ASL 2020 12 / 14



Fränkel–Mostowski models Transfer theorems

The technique of Fränkel–Mostowski permutation models is extremely flexible
to obtain various models of ZFA. What does this all have to do with ZF?

Theorem (Jech–Sochor)

If ϕ is a sufficiently simple formula (where “sufficiently simple” has a fairly
technical meaning, but all of the statements of interest here will be sufficiently
simple), then the existence of a Fränkel–Mostowski model M(A,G) � ϕ
implies the existence of a model of ZF+ ϕ.

For example, one can take the so-called first Fränkel Model. We begin by
taking a countably infinite A and let G = Sym(A). Then, in M(A,G), we have
that A is A-finite, H-finite, and R-infinite. This shows that H-finite does not
imply R-finite in ZFA, and so this implication does not hold in ZF either,
by the Jech–Sochor theorem.

D. Fernández (joint with J. Brot and M. Cao) (UNAM) Finiteness in choiceless contexts ASL 2020 12 / 14



Fränkel–Mostowski models Another model

Another model that we can consider is the second Fränkel Model.

Here, we
begin by letting A =

⋃
n<ω

Pn, where the Pn are pairwise disjoint and each

|Pn| = 2. We now let G ⊆ Sym(A) be the group

G = {π ∈ Sym(A)
∣∣(∀n < ω)(π[Pn] = Pn)}

Then in M(A,G), it is the case that the set A is H-infinite, C-infinite, and
R-finite. This shows now that R-finite does not imply H-finite in ZF.

As part of our work, we find various Fränkel–Mostowski models (some more
technically complicated than others) to explicitly show that there are no further
implication arrows, other than the ones in the previously shown diagram,
between all of the finiteness classes under consideration.
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begin by letting A =

⋃
n<ω

Pn, where the Pn are pairwise disjoint and each

|Pn| = 2. We now let G ⊆ Sym(A) be the group

G = {π ∈ Sym(A)
∣∣(∀n < ω)(π[Pn] = Pn)}

Then in M(A,G), it is the case that the set A is H-infinite, C-infinite, and
R-finite.

This shows now that R-finite does not imply H-finite in ZF.

As part of our work, we find various Fränkel–Mostowski models (some more
technically complicated than others) to explicitly show that there are no further
implication arrows, other than the ones in the previously shown diagram,
between all of the finiteness classes under consideration.
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For further information

If you found this interesting, here are some pointers for further details:

ArXiv:1910.11025 (the paper containing all of the results mentioned here).

https://www.youtube.com/watch?v=eFs7oIhqF6o (a video
containing an extended version of this talk).

Thank you for reading this non-standard remote talk at this non-standard
virtual conference!!!
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